Name_____No_____3/2/2017

1. Let $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ be elements of \mathbf{R}^n and let *c* be a scalar. Write definition of addition and scalar multiplication.

2. Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbf{R}^n and let c and d be scalars. Write properties of **Vector Addition and Scalar Multiplication**

3. Let $\mathbf{u} = (2, 5, -3)$, $\mathbf{v} = (-4, 1, 9)$, and $\mathbf{w} = (4, 0, 2)$. Determine the vector combination $2\mathbf{u} - 3\mathbf{v} + \mathbf{w}$.

4. Let \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_m be vectors in \mathbf{R}^n . The vector \mathbf{v} in \mathbf{R}^n is a *linear combination* of \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_m . Write the definition of linear combination.

5. Write the definition of subspace

6. Consider the subset *V* of \mathbb{R}^3 of vectors of the form (*a*, 2*a*, 3*a*). Show that V is a subspace.