- 1. (15 points) Inverse properties
 - A. (A⁻¹)⁻¹=____
 - B. (cA)-1=____
 - C. (AB)⁻¹=____
 - D. (Aⁿ)⁻¹=____
 - E. (A^t)-1=_____
- 2. (10 points) Write elementary matrices corresponding to row operations of I_3
 - A. Interchange rows2 and 3 of I_3 .
 - B. Multiply row 2 of I_3 by 5
 - $C. \quad Add \ 2 \ times \ row \ 1 \ of \ I_3 \ to \ row \ 2$
- 3. (10 points) Show that If A and B are row equivalent matrices and A is invertible then B is invertible.
- 4. (10 points) Give the definition of a matrix transformation and state the correspondent neural transformation
- 5. (10 points) State composition of two matrix transformations and state the correspondent neural transformation.
- (15 points) Determine the single matrix that describes a reflection in the *x*-axis, following by a rotation through π/2 followed by a dilation of factor 3. Find the image of the point (1 2)^T under this sequence of mappings.
- 7. (10 points) What is orthogonal transformation? Show its preservation for norm and dot products.
- 8. (10 points) Give the definition of an affine transformation.
- 9. (10 points) State composition of two affine transformations and correspondent neural transformation.