- 1. (15 points) Complete codes
 - A. Create the inline function of $\frac{d}{dx}(x^2-5)$

B. Create the inline function of $\frac{d}{dx}(x^3 - 47)$

C. Create the inline function of $\frac{d}{dx}(2^{x^2} - 10x + 1)$

- 2. (10 points) Give the updating equation of the Newton's method for approaching zeros iteratively.
- 3. (15 points) Draw a flow chart to illustrate zero finding of an arbitrary function by the Newton's method.
- 4. (15 points) Write a matlab function to implement flow chart 3, where the input is a string that specifies a given function.
- 5. (15 points) Write codes to call function in problem 4 for solving

A.
$$\sqrt{5}$$

B.
$$\sqrt[3]{47}$$

C. zero of
$$f(x) = 2^{x^2} - 10x + 1$$

- 6. (10 points) Write codes to call function in problem 4 for solving minimizing $f(x)=(x-\tanh(2^*x+10)).^2$
- 7. (20 points) Check codes of problem 5A, 5B, 5C and 6