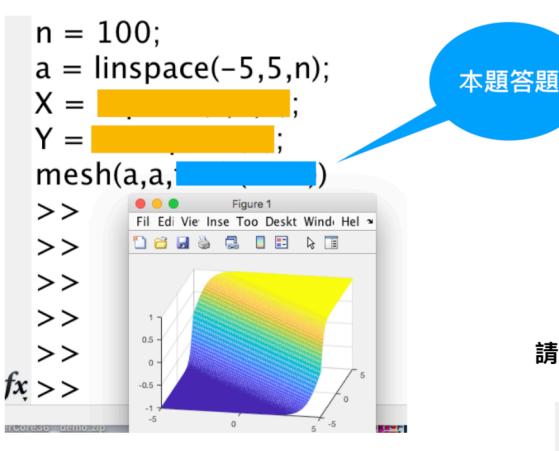

Curve fitting 2-dimensional function fitting

Approximate exp(cos(x)) using neural functions

Apply polyfit to estimate coefficients of a 4-degree polynomial subject to given data for approximating exp(cos(x))

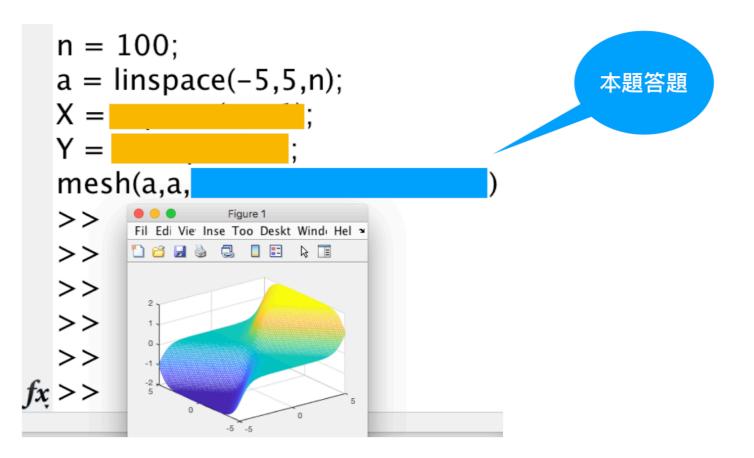
0.0117 -0.0001 -0.3041 0.0189 2.1259


A two-layer feed-forward network with sigmoid hidden neurons and linear output neurons (fitnet), can fit multi-dimensional mapping problems arbitrarily well, given consistent data and enough neurons in its hidden layer.

The network will be trained with Levenberg-Marquardt backpropagation algorithm (trainlm), unless there is not enough memory, in which case scaled conjugate gradient backpropagation (trainscg) will be used.

 $x \in \mathbb{R}^d \quad h = Wx + b, \quad \begin{array}{l} W: m \times d, \\ b: m \times 1 \end{array}$

請完成mesh指令,繪製 f(x, y) = tanh(x + y) 的立體圖



Problem A. Draw the following function in a figure

 $f(x_1, x_2) = \tanh(x_1 + 0.5 * x_2 - 1) + \tanh(0.5x_1 - 0.8x_2 + 0.5)$

where each point $(x_1, x_2) \in [-\pi, \pi] \times [-\pi, \pi]$

請完成mesh指令,繪製 f(x, y) = tanh(x + y) + tanh(x - y) 的立體圖

Exercise 1: Write a script for tasks in problems A, B and C

Problem A. Draw the following function in a figure

 $f(x_1, x_2) = \tanh(x_1 + 0.5 * x_2 - 1) + \tanh(0.5x_1 - 0.8x_2 + 0.5)$

where each point $(x_1, x_2) \in [-\pi, \pi] \times [-\pi, \pi]$

Problem B. Data Sampling: Let n = 300. Generate an $n \times 2$ matrix x, where each row denotes the coordinate of a random point in $[-\pi, \pi]^2$, and an $n \times 1$ vector y such that $y[i] = f(x[i,1], x[i,2]), \quad i = 1...n$

Problem C. Draw n points, represented by x and y, in a figure

How to use neural fitting

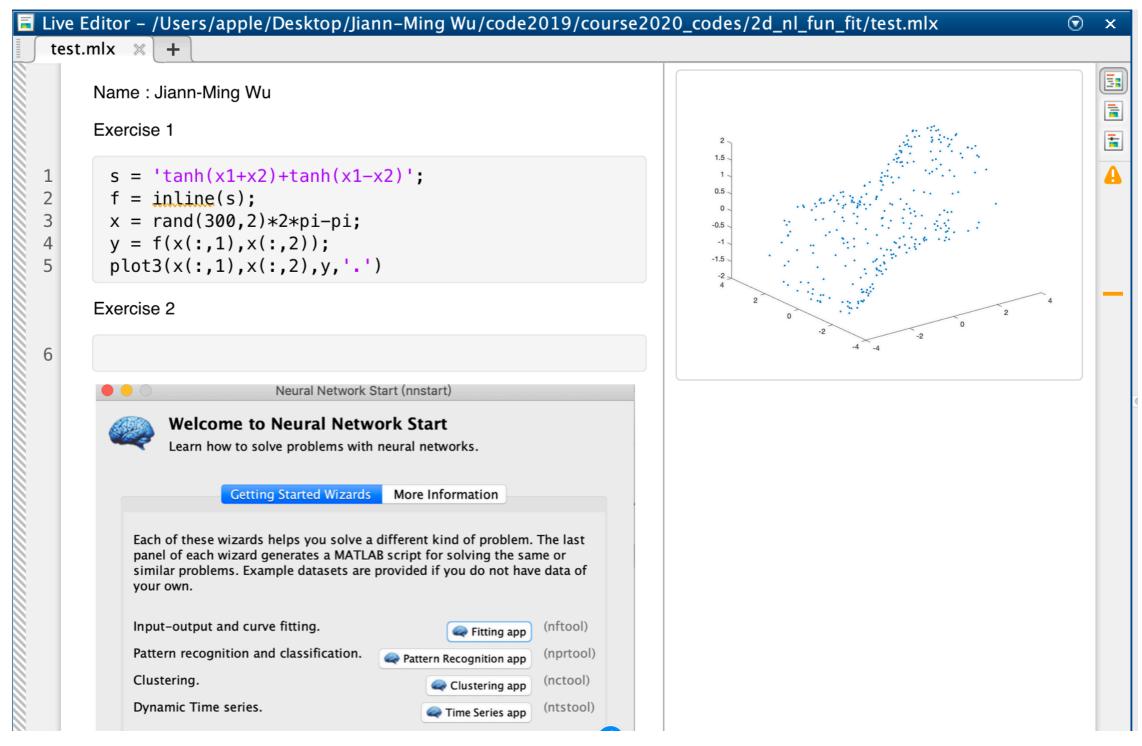
\mathbf{O}		Neural Networ	k Start (r	instart)	
	Welco	me to Neural Net	work	Start	
Ż	Learn ho	w to solve problems w	ith neura	l networks.	
		Getting Started Wizar	ds Mo	re Information)
pane	l of each	wizards helps you solve wizard generates a MAT ms. Example datasets a	LAB scri	pt for solving th	ne same or
pane simil your	l of each ar problei own.		LAB scri	pt for solving th led if you do no	t have data of
pane simil your Input	l of each v ar problei own. t-output a	wizard generates a MAT ns. Example datasets a	LAB scri re provic	pt for solving th	app (nftool)
pane simil your Input Patte	l of each v ar problei own. t-output a	wizard generates a MAT ms. Example datasets a and curve fitting.	LAB scri re provic	pt for solving th led if you do no	app (nftool) app (nprtool)

Exercise 2: Use the toolbox of neural fitting for mapping x to y

Problem A. Import x and y for neural fitting

Problem B. Train a neural network for function approximation subject to x and y

Problem C. Try to print the final screen of neural fitting


Exercise 3:

Problem A. Use the following code to train a neural network for mapping x to y, and calculate mean((y_hat-y').^2)

```
net = feedforwardnet(20, 'trainIm');
net = train(net, x', y');
y_hat = net(x');
```

Problem B. Write a script to draw the neural mapping, which is represented by net, in a figure

How to edit an mlx file

Exercise 4: Write a script for tasks in problems A, B and C

Problem A. Draw the following function in a figure

 $f(x) = \exp(\cos(x))$

where each point $(x) \in [-5,5]$

Problem B. Data Sampling: Let n = 300. Generate a $n \times 1$ matrix x, where each row denotes a point in the square [-5,5], and a $n \times 1$ vector y such that y[i] = f(x[i]), i = 1...n

Problem C. Draw sampled points, represented by x and y, in a figure

Exercise 5: Neural fitting for approximating exp(cos(x))

Problem A. Import x and y for neural fitting

Problem B. Train a neural network for function approximation subject to x and y

Problem C. Try to print the final screen of neural fitting

Problem D. Try to draw the neural function