# Mathematical computation for 3D face reconstruction

Matlab Software

















### Handwriting 99 Multiplication Handwriting Mult...





 $4.7 \star \star \star \star \star$ 

10份評分



#### domain: a set of 280,000 hw-digit images



8

000000100

### codomain

| • {0,1,2,3,4,5,6,7,8,9}          |   |
|----------------------------------|---|
|                                  |   |
| Sketch a digit from 1 to 9 About |   |
| $\mathbf{Q}$                     |   |
|                                  |   |
|                                  | 9 |

#### codomain



#### AI DEEP LEARNING AND APPROXIMATION

#### DISCRETE NEURON

d = 2 dimension



#### First artificial neurons: The McCulloch-Pitts model

1898 - 1969

ASC FORUM Volume VI, Number 2 -Summer 1974

#### 麥卡洛克-皮茨模型

WARREN STURGIS MCCULLOCH



### A DISCRETE NEURAL NETWORK



#### **BINARY NEURON**



#### APPROXIMATION

#### $y = sign(2x_1 + x_2 - 1) - sign(x_1 - 2x_2 + 1)$

#### tiput ut discusto

Learning a discrete neural network







Adaptive Linear Element ADALINE of Widrow

#### APPROXIMATION

#### $y = tanh(2x_1 + x_2 - 1) - tanh(x_1 - 2x_2 + 1)$

## Learning a discrete neural network

#### optimal interconnections

An approximating network







Adaptive Linear Element ADALINE of Widrow



#### HYPER TANGENT Differentiable sigmoid function

### **CONTINUOUS NEURON**

#### d = 2 dimension



perceptron of Rossenblatt

### PERCEPTRON

$$h = w_1 x_1 + w_2 x_2 + w_3$$
$$v = tanh(h)$$



### A MULTILAYER NEURAL NETWORK



#### A DEEP NEURAL NETWORK



#### APPROXIMATION







### APPROXIMATION

$$v_{1} = sign(2x_{1} + 0.5x_{2} - 1)$$
  

$$v_{2} = sign(x_{1} - x_{2} + 1)$$
  

$$y = sign(v_{1}v_{2})$$

Learning a deep neural network





 $\begin{aligned} v &= [sign(2*x(:,1)+0.5*x(:,2)-1) \ sign(x(:,1)-x(:,2)+1)]; \\ y &= sign(v(:,1).*v(:,2)); \end{aligned}$ 



#### MatconvNet/examples/fast\_rcnn

#### fast\_rcnn\_demo



Please download again fast-rcnn-vgg16-pascal07-dagnn

http://www.vlfeat.org/matconvnet/pretrained/



Detections for class 'cow'

Detections for class 'cat'




Deep Learning Cars







#### Nonlinear function approximation

 Given samples from a high-dimensional nonlinear single-valued mapping, the goal is to optimize adaptable parameters for faithful approximation



#### Data driven long-term prediction



### **Table 1**Target functions.

$$f_{1}(\mathbf{x}) = \sin(x_{1} + x_{2})$$
  

$$f_{2}(\mathbf{x}) = x_{1}^{2} + x_{2}^{2}$$
  

$$f_{3}(\mathbf{x}) = 0.5x_{1}^{2} - 0.9x_{2}^{2}$$
  

$$f_{4}(\mathbf{x}) = \exp(-0.05x_{1}^{2} - 0.09x_{2}^{2})$$
  

$$f_{5}(\mathbf{x}) = \sin([1, -1]^{T}x) + \exp(-x^{T}Ax)$$

$$f_{6}(\mathbf{x}) = \tanh(0.8x_{1} + 0.2x_{2}) + \sin(0.3x_{1} - 0.9x_{2})$$
  

$$f_{7}(\mathbf{x}) = 0.5 \sin(x_{1} + x_{2}) + 0.2x_{1} - 0.2x_{2}$$
  

$$f_{8}(\mathbf{x}) = \exp(-(\mathbf{x} - \mathbf{w}_{1})^{T}A(\mathbf{x} - \mathbf{w}_{1})) + \exp(-(\mathbf{x} - \mathbf{w}_{2})^{T}B(\mathbf{x} - \mathbf{w}_{1}))$$

$$f_{9}(\mathbf{x}) = f_{8}(\mathbf{x}) + 0.5 \sin(x_{1} + 0.3x_{2}) + 0.5 \sin(0.2x_{1} - 0.8x_{2})$$
  

$$f_{10}(x) = \sin(x_{1} + x_{2} + x_{3}) + \cos(x_{1} + x_{2} + x_{3})$$
  

$$f_{11}(x) = \tanh(x_{1} + x_{2} + x_{3} + x_{4})$$



NRBF(9) by annealed FE

NRBF(12) by annealed FE





Figure 4



**Fig. 5.** Mean square testing errors of annealed competitive learning (blue curve) and the Rätsch method (red curve) in approximating  $f_1$  versus the numbers of hidden units. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)













NRBF by annealed FE learning



Figure 6

200 -100 -

0、 -100 -200 -300 --400 -10





## Chaotic differential function approximation

# $\frac{\partial x}{\partial t} = \frac{ax(t-\tau)}{1+x^{c}(t-\tau)} - bx(t),$

#### $\tau = 17$ , a = 0.2, c = 10 and b = 0.1



#### Data driven long-term prediction





Fig. 10 we star lock should and disting of MC17 time series with we 50 and we 200 hy superstition series with K 2 (Fer intermetation of the

#### Mackey-Glass 30

# $\frac{\partial x}{\partial t} = \frac{ax(t-\tau)}{1+x^c(t-\tau)} - bx(t),$

#### $\tau = 30$ a = 0.2, c = 10 and b = 0.1



50-step-look-ahead long term predictions of Mackey-Glass 30 data



Figure 11

## CDFA: Nonlinear delay differential equations

 $\frac{\partial x}{\partial t} = x(t-\tau) - x^3(1-\tau),$ 

#### where the delav au is set to 1.6.

J.C. Sprott, A simple chaotic delay differential equation, Phys. Lett. A 366 (2007) 397–402.

### **Function Approximation**

Multiple input variables Nonlinear mapping from domain to range

#### tanh



<sup>2008,</sup> AM, NDHU

#### Two post-nonlinear projections

$$f(x1, x2) = \tanh(2x_1 + 3x_2) + \tanh(2x_1 - 3x_2)$$



Adavanced Numerical Computation 2008, AM, NDHU

58

#### Intelligence computations

- Neural networks
- Machine Learning
- Data analysis
- Numerical computations

#### **Function approximation**



2008, AM, NDHU

#### **One-dimensional function approximation**



<sup>2008,</sup> AM, NDHU

#### LM learning for MLP



2008, AM, NDHU

#### Learning MLPotts networks



Adavanced Numerical Computation 2008, AM, NDHU

#### **Approximating Gabor function**

Learning generalized adalines (Wu et al 2006)



#### **Approximating Gabor function**

#### Learning gadaline networks



#### Sinusoidal function approximation



NRBF(3) by annealed FE

NRBF(6) by annealed FE



NRBF(9) by annealed FE









NRBF(15) by annealed FE

NRBF(18) by annealed FE







Figure 6

(d)







Yeast gene expressions of different time courses

#### Figure 10



#### deep learning




Figure 12

#### Robot arm control



Adavanced Numerical Computation 2008, AM, NDHU

#### Pen writing recognition



Adavanced Numerical Computation 2008, AM, NDHU







#### **Covariance Matrix Analysis**



Adavanced Numerical Computation 2008, AM, NDHU

# Function approximation v.s One-to-many mapping

| C4                  | function approximation. | one-to-many mapping.              |
|---------------------|-------------------------|-----------------------------------|
| type₊               | an RBF network.         | multiple high-order RBF networks, |
| approximation       | one-to-one mapping.     | one-to-many mapping               |
| order₽              | single-order posterior  | high-order posterior              |
|                     | interconnections        | interconnections                  |
| learning            | supervised learning .   | supervised learning.              |
| data type.          | paired data without     | paired data with weights.         |
|                     | weights.                |                                   |
| control system.     | forward kinematics₽     | inverse kinematics.               |
| modular type 💩      | single module.          | multiple modules.                 |
| objective function. | mean square error.      | weighted square error.            |



- P=2,k=25
- 2 tanh function
- mse=0.0022



- P=2,k=25
- 2quadratic function
- Mse=0.0089

## One-to-many function approximation to





8.

6.





#### **Approximating functions**







#### **Approximating functions**





























### 2-type deterministic transition



| c,    | target prediction | state inference. | target prediction |   |
|-------|-------------------|------------------|-------------------|---|
|       | (learning),       |                  | (aenn).           |   |
| error | 0.000257*         | 0.000758         | 0.000281.         | • |

#### 3-type deterministic transition



÷

| ę      | target prediction | state inference. | target prediction |  |
|--------|-------------------|------------------|-------------------|--|
|        | (learning),       |                  | (aenn)₊           |  |
| error₊ | 0.000211*         | 0.000911.        | 0.000230+         |  |

#### 2-type Stochastic transition



#### 3-type Stochastic transition



### Differential function approximation

Neural Networks

$$v(t) = \frac{dx}{dt}$$

$$= F(v(t), x(t))$$

Learning neural networks to approximate differential equations

### **Clustering analysis**

#### Find data clusters

|                    |          | #             | #        | #           | 27          | #                                         | ##            | <b>##</b> +        | 22         | <b>₩</b> • |
|--------------------|----------|---------------|----------|-------------|-------------|-------------------------------------------|---------------|--------------------|------------|------------|
| 0.9                | •        | Ŵ             | ∰        | <b>∰</b> •  |             | #                                         | #             | <b>.</b>           | <b>##</b>  |            |
| 0.8                | [∙∰      |               | <b>#</b> | #           | #           | #                                         | #             |                    |            | ₩ -        |
| 0.7                |          | #             |          |             | ₩.          | <b>#</b>                                  | #             |                    | <b>#</b>   | ₩ .        |
| 0.0                | <b>*</b> | #             | #        | ##          | #           | #                                         | #             | ₩                  |            | ₩          |
| 0.0                | [ ₩      | ·             | ₩        | #           | ŧ           | #                                         | ·#•           | #                  | #          | #          |
| 0.4                | г        |               |          |             |             |                                           |               |                    |            |            |
| 03                 | . 🗰      | . ∰           |          | #           | #           | #                                         | ₩             | <b>∰</b> +         |            |            |
| 0.3                | [ ∰      | , ∰<br>∰      |          | #<br>#      | ₩<br>#      | ₩<br>₩                                    | ₩<br>₩        | ₩•<br>₩•           | #<br>#     | ₩<br>₩     |
| 0. <b>3</b><br>0.2 |          | , ∰<br>∰<br>₩ |          | #<br>#<br># | ₩<br>#      | ∰#<br>•∰#<br>₩                            | ₩<br>₩<br>•#. |                    | <br>∰<br>∰ |            |
| 0.3<br>0.2<br>0.1  |          |               |          |             | ₩<br>#<br># | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br># | ₩<br>₩<br>₩   | ##*<br>###*<br>*** |            |            |

#### Rotated distributed clusters



### Deformable gridding

#### Place a lattice to structure distributed clusters



Adavanced Numerical Computation 2008, AM, NDHU

#### Self-organization





1.5

1.5

Figure 3



Figure 6





### **Analysis of Natural images**



Adavanced Numerical Computation 2008, AM, NDHU

#### **Generative models of natural images**

#### Local means


### Sudoku

|        | sudoku       | 9x9        |   |      |      |     | _ <b>D</b> X |  |  |  |  |  |  |  |  |  |  |  |
|--------|--------------|------------|---|------|------|-----|--------------|--|--|--|--|--|--|--|--|--|--|--|
| 9<br>( | SUD(<br>JM W | OKU<br>/u) | J | .OAD | DATA | NEW |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |
|        |              |            |   |      |      |     |              |  |  |  |  |  |  |  |  |  |  |  |

109

| SUD<br>(JM W | OKL     | 1                                                                                                                     |                                                                                                                       |                                                        |                                                                                                                                                              |                                                        |                                                        |   |  |
|--------------|---------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---|--|
|              | ∕u)     | L                                                                                                                     | .OAD                                                                                                                  | DATA                                                   | R                                                                                                                                                            | UN                                                     | NE                                                     | W |  |
| 4            | 5       |                                                                                                                       |                                                                                                                       | 2                                                      |                                                                                                                                                              |                                                        |                                                        |   |  |
|              |         |                                                                                                                       |                                                                                                                       | 8                                                      |                                                                                                                                                              |                                                        |                                                        | 6 |  |
|              |         | 2                                                                                                                     |                                                                                                                       |                                                        | 5                                                                                                                                                            |                                                        | 8                                                      | 4 |  |
| 6            |         |                                                                                                                       |                                                                                                                       |                                                        | 7                                                                                                                                                            |                                                        | 9                                                      |   |  |
|              | 1       |                                                                                                                       |                                                                                                                       | 3                                                      |                                                                                                                                                              |                                                        | 6                                                      |   |  |
|              | 3       |                                                                                                                       | 1                                                                                                                     |                                                        |                                                                                                                                                              |                                                        |                                                        | 7 |  |
| 1            | 9       |                                                                                                                       | 2                                                                                                                     |                                                        |                                                                                                                                                              | 6                                                      |                                                        |   |  |
| 5            |         |                                                                                                                       |                                                                                                                       | 7                                                      |                                                                                                                                                              |                                                        |                                                        |   |  |
|              |         |                                                                                                                       |                                                                                                                       | 6                                                      |                                                                                                                                                              |                                                        | 3                                                      | 9 |  |
|              | 4 6 1 5 | 4       5         6       -         6       -         1       3         1       9         5       -         -       - | 4       5         1       2         6       1         1       3         1       9         5       1         1       1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{ c c c c } 4 & 5 & & & & & 2 \\ \hline & & & & & & & & 8 \\ \hline & & & & & & & 2 & & & & 8 \\ \hline & & & & & & & & 2 & & & & & & & & & &$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |   |  |

# 速讀與速讀聯想記憶體

**Donald Olding Hebb** 



### John Joseph Hopfield

### **Neural Networks**





# Sudoku

整數規劃數學求解 0與1的數學規劃式









Fig. 6. Bipolar neural activations for Sudoku encoding of K = 4.

research direction of Sudoku associative memory. The goal is to achieve automatic error detection, error correction and restoration of Sudoku-rule embedded patterns subject to fewer partial clues, condense clues and perturbed or damaged clues.



Fig. 7. The concept of developing SAM based on check-rule embedded pattern encoding and associative memory.



Fig. 10. Evolution of neural activations for general Sudoku restoration with K = 4 along an annealing process.

| 174382695               |                         | 3 5 2 1 8 7 9 6 4 |
|-------------------------|-------------------------|-------------------|
| 9 8 6 5 4 7 3 2 1       |                         | 8 4 9 2 3 6 5 1 7 |
| 6 1 5 8 9 3 2 4 7       |                         | 937618425         |
| 8 2 9 4 7 6 5 1 3       |                         | 264975138         |
| 4 3 7 2 5 1 9 8 6       |                         | 185423796         |
| 591734862519            | 948                     | 7 2 6 3 5 1 8 4 9 |
| 3 6 2 9 1 8 7 5 4 3 6 2 | 7 6 1                   | 5 9 3 8 4 2 6 7 1 |
| 7 4 8 6 2 5 1 3 9 8 4 7 | 3 5 2                   | 4 1 8 7 6 9 3 5 2 |
| 362517984               | 2 7 9                   | 1 6 5 4 8 3       |
| 457698123               | 534                     | 287916            |
| 5 4 1 2 2 6 7 0 9       | 1 8 0                   | 349275            |
| 8 9 6 4 7 5 2 3 1       | 860 254803              | 671524            |
| 273981456               | 372 318627              | 954138            |
| 8 1 2 5 6 3             | 794 172368              | 5 4 9             |
| 7 4 3 8 2 9             | 6 1 5 8 9 5 2 4 1       | 3 6 7             |
| 569174                  | 283 436759              | 2 1 8             |
| 237985                  | 1 4 6 3 2 7 9 4 1 5 8 6 | 7 2 3             |
| 694317                  | 5 2 8 9 4 6 5 8 3 1 7 2 | 4 9 6             |
| 158642                  | 937518627934            | 1 8 5             |
| 4 9 8                   | 2 7 3 1 6 5 4 9 8 3 2 7 |                   |
| 526                     | 8 9 1 7 3 4 1 6 2 8 9 5 |                   |
|                         | 4 0 5 8 9 2 3 7 5 4 0 1 |                   |
| 0 0                     | 6 1 0 2 8 3 7 5 4 6 1 0 |                   |
| 230                     | 7 8 4 6 5 1 2 3 9 7 4 8 |                   |
| 200                     | 578324691               |                   |
|                         | 9 3 6 7 1 8 5 4 2       |                   |
|                         | 241596378               |                   |
|                         | 493865127               |                   |
|                         | 1 6 7 9 3 2 4 8 5       |                   |
|                         | 8 2 5 1 4 7 9 6 3       |                   |

Fig. 12. A V-shape compound Sudoku pattern.

| a | 1<br>2<br>9<br>6<br>8<br>4<br>5<br>3<br>7 | 7<br>5<br>8<br>1<br>2<br>3<br>9<br>6<br>4 | 4<br>3<br>6<br>5<br>9<br>7<br>1<br>2<br>8 | 3158427963            | 8<br>6<br>4<br>9<br>7<br>5<br>3<br>1<br>2<br>6 | 2<br>9<br>7<br>3<br>6<br>1<br>4<br>8<br>5<br>2 | 64<br>32<br>59<br>87<br>1<br>5                      | 972418653<br>1                                 | 5 8 1 7 3 6 2 4 9 7                            | 5389                                                     | 1<br>6<br>4<br>8                                         | 9274                                                     |                                                |                                                |                                                |             |            |                     |         |          |                                 |   |         |                                 |                 |          |                                 |         |         |         |         |   |   |   |   |   |   |   |   |
|---|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------|------------|---------------------|---------|----------|---------------------------------|---|---------|---------------------------------|-----------------|----------|---------------------------------|---------|---------|---------|---------|---|---|---|---|---|---|---|---|
|   |                                           |                                           |                                           | 4<br>1<br>5<br>8<br>2 | 5<br>8<br>4<br>9<br>7                          | 7<br>9<br>1<br>6<br>3                          | 6<br>2<br>3<br>4<br>9<br>8<br>7<br>5<br>2<br>6<br>1 | 9<br>4<br>7<br>8<br>1<br>4<br>6<br>3<br>9<br>5 | 8<br>3<br>5<br>1<br>2<br>3<br>9<br>7<br>4<br>8 | 1<br>6<br>7<br>2<br>4<br>5<br>8<br>1<br>9<br>3<br>6<br>4 | 2<br>7<br>9<br>3<br>5<br>6<br>2<br>7<br>8<br>1<br>4<br>9 | 3<br>5<br>8<br>1<br>6<br>3<br>9<br>4<br>5<br>7<br>2<br>8 | 4<br>8<br>3<br>7<br>6<br>2<br>1<br>5<br>9<br>2 | 5<br>6<br>7<br>9<br>1<br>8<br>4<br>2<br>3<br>7 | 1<br>9<br>2<br>4<br>5<br>3<br>6<br>8<br>7<br>3 | 3<br>9<br>5 | 2 4 1 6    | 7685                | 1       |          |                                 |   |         |                                 |                 |          |                                 |         |         |         |         |   |   |   |   |   |   |   |   |
|   |                                           |                                           |                                           |                       |                                                |                                                |                                                     |                                                | 2                                              | 51872                                                    | 27653                                                    | 6<br>3<br>1<br>4<br>9                                    | 843675924                                      | 9651873490                                     | 1 5 2 9 4 8 6 1 3 7                            | 7842637580  | 3978521960 | 4 2 9 3 1 4 8 6 5 0 | 8726531 | 15394720 | 6<br>4<br>9<br>1<br>2<br>8<br>7 | b | 3675924 | 5<br>1<br>8<br>7<br>3<br>4<br>9 | 2 9 4 8 6 1 3 T | 42637580 | 7<br>8<br>5<br>2<br>1<br>9<br>6 | 9314865 | 8726531 | 1539472 | 6491287 | с | 5 | 3 | 8 | 7 | 1 | 8 | Ş |

Fig. 13. Different partial clues for V-shape compound Sudoku pattern restoration, (a) a left part of the V-shape compound pattern, (b) a central pattern, and (c) a damaged central pattern.

a







Fig. 15. Different partial clues for starfish shape compound Sudoku pattern restoration, (a) three tentacles, (b) one tentacle, and (c) a damaged seed pattern.









### **Blind source separation – fetal ECG**



Adavanced Numerical Computation 2008, AM, NDHU

|  | 🗱 🖆 💡 Current Directory: I:\data2011\code2006\Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ipsiECG                                                                                                                                                                                                           |
|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Figure 3<br>File Edit View Insert Tools Desktop Window<br>File Edit V | Fetal ECG extraction 2009<br>by PottsICA<br>Dr. Jiann-MIng Wu<br>AM, NDHU<br>F <sup>iling</sup><br>LOAD Seg No.<br>1-4 data\fetal_ecg_seg1.dat<br>Process<br>PottsICA learning K 5<br>MLPotts lerning 3<br>KL div |
|  | 下午 1:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |

## Mixed Facial images

### Wu et al 2008

sources

mixed images

AemICA

JadeICA





್ರಾ









Adavanced Numerical Computation 2008, AM, NDHU



### ERP(event related potential)

J.-M. Wu et al. / Neural



Fig. 11. Observed ERPs.

27

## ICs of ERP (Wu et al 2008)



Fig. 12. Independent components obtained by AemICA for blind separation of ERPs.