
Deep Learning





Multiple Processing Layers
• Deep learning allows computational 

models that are composed of multiple 
processing layers to learn 
representations of data with multiple 
levels of abstraction. 



Applications
• Significant Improvement in speech 

recognition, visual object recognition, 
object detection and many other 
domains such as drug discovery and 
genomics. 



Backpropagation
• Deep learning discovers intricate 

structure in large data sets by using the 
backpropagation algorithm to indicate 
how a machine should change its 
internal parameters that are used to 
compute the representation in each 
layer from the representation in the 
previous layer 



CNN
• Deep convolutional nets have brought 

about breakthroughs in processing 
images, video, speech and audio, 
whereas recurrent nets have shone light 
on sequential data such as text and 
speech. 



Applications in modern Society
• Web searches 
• Content filtering on social net- works
• Recommendations on e-commerce websites, 
• Consumer products such as cameras and 

smartphones 
• Identify objects in images
• Transcribe speech into text
• Match news items, posts or products with 

users’ interests
• Select relevant results of search 



Machine learning System
• Required careful engineering and 

considerable domain expertise to design a 
feature extractor 
– Transform the raw data (such as the pixel 

values of an image) into a suitable internal 
representation or feature vector 

• Detect or classify patterns in the input 



Representation learning  

• Discover the representations needed for 
detection or classification 



• Deep-learning methods are representation-
learning methods with multiple levels of 
representation, obtained by composing 
simple but non-linear modules that each 
transform the representation at one level 
(starting with the raw input) into a 
representation at a higher, slightly more 
abstract level 



Very complex functions  

• Composition of enough transformations
• The key aspect of deep learning is that 

these layers of features are not designed 
by human engineers: they are learned from 
data using a general-purpose learning 
procedure. 



Deep Learning for Artificial Intelligence

• Discover intricate structures in high-dimensional 
data and is therefore applicable to many 
domains of science, business and government 

• Beating records in image recognition  
has beaten other machine-learning techniques 
at predicting the activ- ity of potential drug 
molecules8, analysing particle accelerator 
data9,10, reconstructing brain circuits11, and 
predicting the effects of mutations in non-coding 
DNA on gene expression and disease12,13 



• Natural language understanding14, particularly 
topic classification, sentiment analysis, 
question answering15 and language translation 

• Very little engineering by hand, so it can easily 
take advantage of increases in the amount of 
available computation and data. New learning 
algorithms and architectures that are currently 
being developed for deep neural networks will 
only accelerate this progress 



Supervised learning  

• A large data set of images of houses, cars, 
people and pets, each labelled with its 
category. 

• During training, the machine is shown an 
image and produces an output in the form 
of a vector of scores, one for each category. 

• We want the desired category to have the 
highest score of all categories, but this is 
unlikely to happen before training 



Objective Function 
• An objective function that measures the error (or 

distance) between the output scores and the 
desired pattern of scores. 

• The machine then modifies its internal adjustable 
parameters to reduce this error. 

• These adjustable parameters, often called weights, 
are real numbers that can be seen as ‘knobs’ that 
define the input–output function of the machine. 

• In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, 
and hundreds of millions of labelled examples with 
which to train the machine. 



Training
• To properly adjust the weight vector, the 

learning algorithm computes a gradient 
vector that, for each weight, indicates by 
what amount the error would increase or 
decrease if the weight were increased by a 
tiny amount. 

• The weight vector is then adjusted in the 
opposite direction to the gradient vector 



• The objective function, averaged over all 
the training examples, can be seen as a 
kind of hilly landscape in the high-
dimensional space of weight values. 

• The negative gradient vector indicates the 
direction of steepest descent in this 
landscape, taking it closer to a minimum, 
where the output error is low on average 



Stochastic gradient descent (SGD)
• This consists of showing the input vector for a few 

examples, computing the outputs and the errors, 
computing the average gradient for those examples, and 
adjusting the weights accordingly.

• The process is repeated for many small sets of examples 
from the training set until the average of the objective 
function stops decreasing. 

• It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all 
examples. 

• This simple procedure usually finds a good set of weights 
surprisingly quickly when compared with far more 
elaborate optimization techniques 



Testing
• After training, the performance of the 

system is measured on a different set of 
examples called a test set. 

• This serves to test the generalization ability 
of the machine — its ability to produce 
sensible answers on new inputs that it has 
never seen during training. 









• In the late 1990s, neural nets and backpropagation 
were largely forsaken by the machine-learning 
community and ignored by the computer-vision and 
speech-recognition communities. 

• It was widely thought that learning useful, 
multistage, feature extractors with lit- tle prior 
knowledge was infeasible. 

• In particular, it was commonly thought that simple 
gradient descent would get trapped in poor local 
minima — weight configurations for which no small 
change would reduce the average error. 



• In practice, poor local minima are rarely a problem with large 
net- works. 

• Regardless of the initial conditions, the system nearly always 
reaches solutions of very similar quality. Recent theoretical and 
empirical results strongly suggest that local minima are not a 
serious issue in general. 

• Instead, the landscape is packed with a combinato- rially large 
number of saddle points where the gradient is zero, and the 
surface curves up in most dimensions and curves down in the 
emainder29,30. The analysis seems to show that saddle points 
with only a few downward curving directions are present in 
very large numbers, but almost all of them have very similar 
values of the objec- tive function. 

• Hence, it does not much matter which of these saddle points 
the algorithm gets stuck at. 



• Interest in deep feedforward networks was revived around 2006 (refs 
31–34) by a group of researchers brought together by the Cana- dian 
Institute for Advanced Research (CIFAR). 

• The researchers intro- duced unsupervised learning procedures that 
could create layers of feature detectors without requiring labelled data. 
The objective in learning each layer of feature detectors was to be able 
to reconstruct or model the activities of feature detectors (or raw inputs) 
in the layer below. 

• By ‘pre-training’ several layers of progressively more complex feature 
detectors using this reconstruction objective, the weights of a deep 
network could be initialized to sensible values. 

• A final layer of output units could then be added to the top of the 
network and the whole deep system could be fine-tuned using standard 
backpropaga- tion 33–35. 

• This worked remarkably well for recognizing handwritten digits or for 
detecting pedestrians, especially when the amount of labelled data was 
very limited36. 



• The first major application of this pre-training approach 
was in speech recognition, and it was made possible by 
the advent of fast graphics processing units (GPUs) that 
were convenient to program37 and allowed researchers to 
train networks 10 or 20 times faster. 

• In 2009, the approach was used to map short temporal 
windows of coef- ficients extracted from a sound wave to 
a set of probabilities for the various fragments of speech 
that might be represented by the frame in the centre of 
the window. It achieved record-breaking results on a 
standard speech recognition benchmark that used a 
small vocabu- lary38 and was quickly developed to give 
record-breaking results on a large vocabulary task39. 



• Mohamed,A.-R.,Dahl,G.E.&Hinton,G. 
Acoustic modeling using deep belief 
networks. IEEE Trans. Audio Speech Lang. 
Process. 20, 14–22 (2012). 

• Dahl,G.E.,Yu,D.,Deng,L.&Acero,A.Context-
dependent pre-trained deep neural 
networks for large vocabulary speech 
recognition. IEEE Trans. Audio Speech 
Lang. Process. 20, 33–42 (2012). 



http://www.cs.toronto.edu/~asamir/
papers/speechDBN_jrnl.pdf

http://www.cs.toronto.edu/~asamir/papers/speechDBN_jrnl.pdf




v1 : input
h1 : generated hidden state given v1 and W
v2 : reconstructed state of visible units
h2 : inferred hidden state 

p(hj =1| v,θ ) = sigmoid(cj + wijvi
i
∑ )

p(vi =1| h,θ ) = sigmoid(bi + wijhj
j
∑ )





• By 2012, versions of the deep net from 2009 were 
being developed by many of the major speech 
groups6 and were already being deployed in 
Android phones. For smaller data sets, 
unsupervised pre-training helps to prevent 
overfitting40, leading to significantly better 
generalization when the number of labelled exam- 
ples is small, or in a transfer setting where we have 
lots of examples for some ‘source’ tasks but very 
few for some ‘target’ tasks. Once deep learning 
had been rehabilitated, it turned out that the pre-
training stage was only needed for small data sets. 





matlab conv2 & convn

https://www.mathworks.com/help/matlab/ref/conv2.html?
requestedDomain=www.mathworks.com&requestedDomain=www.mathworks.com

https://www.mathworks.com/help/matlab/ref/conv2.html?requestedDomain=www.mathworks.com&requestedDomain=www.mathworks.com






3D convolution

>> A=ones(3,3,3)
B=ones(4,4,4)
A=A/27
C=convn(B,A,'valid')



Figure2|Inside a convolutional network. The 
outputs(not the filters) of each layer (horizontally) 
of a typical convolutional network architecture 
applied to the image of a Samoyed dog (bottom 
left; and RGB (red, green, blue) inputs, bottom 
right). Each rectangular image is a feature map 
corresponding to the output for one of the learned 
features, detected at each of the image positions. 
Information flows bottom up, with lower-level 
features acting as oriented edge detectors, and a 
score is computed for each image class in output. 
ReLU, rectified linear unit.

•  



CNN for multiple arrays
• A colour image composed of three 2D 

arrays containing pixel intensities in the 
three colour channels. 

• Many data modalities are in the form of 
multiple arrays: 1D for signals and 
sequences, including language; 2D for 
images or audio spectrograms; and 3D for 
video or volumetric images. 
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filters
inputmap

outputmaps
mapsize=6-3+1

kernel(1,1)

kernel(2,1)

kernel(3,1)

kernel(1,2)
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kernel(3,2)



for j=1:outputmaps(l)

for i=1:inputmaps

inputmaps=outputmaps(l-1)

Initialize kernel( i,j) of 
layer l





Outputmaps

Full connections

Full connections
y





2D Convolution 

overlapping moving of filters

10-3+1



Down Sampling

window

Non-overlapping moving  
sampling









for j=1:outputmaps(l)

for i=1:inputmaps

inputmaps=outputmaps(l-1)
Set zero to z

set h to convn of 
layer(l-1).a(i) by kernel( i,j) 
Add h to z

layer(l).a(j)=sigm(z)

z denotes stimuli
k denotes filter
a denotes activation

For some layer l



filters
inputmap

outputmaps
mapsize=6-3+1

kernel(1,j)

kernel(2,j)

kernel(3,j)
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B, big matrix
A, small matrix B, small matrix

A, big matrix





1. Derivative of output with respect to activation ?
2. Derivative of output with respect to stimuli?
3. Derivative of output with respect to kernels?

y denotes output of CNN



for some layer l

derivative of 
sigmoid

The first term is denoted by v(j)u(j)
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inputmap
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mapsize=6-3+1
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2D Convolution 

overlapping moves of filters

10-3+1

Sampling by convolution

A={                            }

X

X

Position x on the activation map 
contributes to only position X of the 
resulting map through k(1)

1 2 3
4 5 6
7 8 9



1

2D Convolution 

overlapping moves of filters

10-3+1

Sampling by convolution

A={                            }

X

4

Position x on the activation map 
contributes to only positions with label 
4 and 1 through k(4) and k(1) 
respectively

1 2 3
4 5 6
7 8 9



4
2 1

2D Convolution 

overlapping moves of filters

10-3+1

Sampling by convolution

A={                            }

X

5

.There are four validly convoluted samples 
that contain position X

.Position x on the activation map 
contributes to only positions labeled 1,2,4 
and 5 through k(.         ) 

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

Flip 
all

9 8 7
6 5 4
3 2 1

5 4
2 1
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2D Convolution 

overlapping moves of filters

10-3+1

Sampling by convolution

A={                            }

X

.There are 9 validly convoluted samples 
that contain position X at entry (i,j) 

.Position x on the activation map 
contributes to positions  labeled with 1-9 
through k(                  ) 

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

Flip 
all

9 8 7
6 5 4
3 2 1

9 8 7
6 5 4
3 2 1

A frame with right-
down corner at Entry 
(i,j), denoted by B[i,j]



9 8 7
6 5 4
3 2 1

Indices of layers are omitted. It is observed that a[i,j] contributes to 
the frame B[i,j] through flipall(K)

The gradient of 
output with 
respect to frame 
B[i,j], which is 
denoted by V[i,j]

EQ2







layers{l+1}.type 
'c'

(EQ2)

Size?



2D Convolution 

overlapping moves of filters

Size=10-3+1

Sampling by convolution

A={                            }

X
1 2 3
4 5 6
7 8 9

Entry (i,j)

1 2 3
4 5 6
7 8 9

A frame with it left-upper corner at Entry 
(i,j) is weighted by the kernel





X
1 2 3
4 5 6
7 8 9

Entry (i,j)

1 2 3
4 5 6
7 8 9

A frame with it left-upper corner at Entry 
(i,j) is weighted by the kernel

Indices of layers are omitted

h[i,j]

A[i,j]

h=a*K
h[i,j]=sum(sum(A[i,j].*K))



h=a*K
h[i,j]=sum(sum(A[i,j].*K))

(EQ1)



(EQ1)

Size 
of dk?



Four key ideas behind ConvNets  

• local connections
• shared weights
• Pooling
• the use of many layers 



Architecture  • A series of stages 
• Units in a convolu- tional layer are organized in feature maps, within 

which each unit is connected to local patches in the feature maps of 
the previous layer through a set of weights called a filter bank. 

• The result of this local weighted sum is then passed through a non-
linearity such as a ReLU 

• All units in a feature map share the same filter bank. Differ- ent 
feature maps in a layer use different filter banks 

• Convolutional layers 
– the role of the convolutional layer is to detect local con- junctions of features 

from the previous layer
• Pooling layers. 

– the role of the pooling layer is to merge semantically similar features into one 



• if a motif can appear in one part of the 
image, it could appear anywhere, hence 
the idea of units at different locations 
sharing the same weights and detecting the 
same pattern in different parts of the array 

• Mathemati- cally, the filtering operation 
performed by a feature map is a discrete 
convolution, hence the name. 



• in array data such as images, local groups 
of values are often highly correlated, 
forming distinctive local motifs that are 
easily detected. 

• the local statistics of images and other 
signals are invariant to location 



• A typical pooling unit computes the 
maximum of a local patch of units in one 
feature map (or in a few feature maps). 
Neighbouring pooling units take input from 
patches that are shifted by more than one 
row or column, thereby reducing the 
dimension of the representation and 
creating an invariance to small shifts and 
dis- tortions. 



• Two or three stages of convolution, non-
linearity and pool- ing are stacked, followed 
by more convolutional and fully-connected 
layers. Backpropagating gradients through 
a ConvNet is as simple as through a 
regular deep network, allowing all the 
weights in all the filter banks to be trained. 



• Deep neural networks exploit the property that 
many natural sig- nals are compositional 
hierarchies, in which higher-level features are 
obtained by composing lower-level ones. In 
images, local combi- nations of edges form motifs, 
motifs assemble into parts, and parts form objects. 

• Similar hierarchies exist in speech and text from 
sounds to phones, phonemes, syllables, words and 
sentences. 

• The pooling allows representations to vary very 
little when elements in the previ- ous layer vary in 
position and appearance. 



simple cells and complex cells in visual neuroscience  

• LGN–V1–V2–V4–IT hierarchy in the visual cortex 
• ConvNets have their roots in the neocognitron46, 

the architecture of which was somewhat similar, 
but did not have an end-to-end supervised-
learning algorithm such as backpropagation 

• A primitive 1D ConvNet called a time-delay 
neural net was used for the recognition of 
phonemes and simple words 



IMAGE UNDERSTANDING WITH DEEP 
CONVOLUTIONAL NETWORKS  



• traffic sign recognition53, the segmentation 
of biological images54 particularly for 
connectomics55, and the detection of faces, 
text, pedestrians and human bodies in 
natural images3 

• A major recent practical success of 
ConvNets is face recognition59 

















• Figure3|Fromimagetotext. Captions generated by 
a recurrentneural network (RNN) taking, as extra 
input, the representation extracted by a deep 
convolution neural network (CNN) from a test 
image, with the RNN trained to ‘translate’ high-level 
representations of images into captions (top). 
Reproduced with permission from ref. 102. 

• When the RNN is given the ability to focus its 
attention on a different location in the input image 
(middle and bottom; the lighter patches were given 
more attention) as it generates each word (bold), 
we found86 that it exploits this to achieve better 
‘translation’ of images into captions. 



• Importantly, images can be labelled at the 
pixel level, which will have applications in 
technology, including autonomous mobile 
robots and 

• self-driving cars 



• ConvNets were largely forsaken by the 
mainstream computer-vision and machine-
learning communities until the ImageNet 
competition in 2012 



• When deep convolutional networks were applied to a data 
set of about a million images from the web that contained 
1,000 different classes, they achieved spec- tacular 
results, almost halving the error rates of the best compet- 
ing approaches1. This success came from the efficient use 
of GPUs, ReLUs, a new regularization technique called 
dropout62, and tech- niques to generate more training 
examples by deforming the existing ones. This success 
has brought about a revolution in computer vision; 
ConvNets are now the dominant approach for almost all 
recognition and detection tasks4,58,59,63–65 and approach 
human performance on some tasks. 

• A recent stunning demonstration combines ConvNets and 
recurrent net modules for the generation of image 
captions 



• Srivastava,N.,Hinton,G.,Krizhevsky,A.,Suts
kever,I.&Salakhutdinov,R. Dropout: a 
simple way to prevent neural networks 
from overfitting. J. Machine Learning Res. 
15, 1929–1958 (2014). 



https://www.cs.toronto.edu/~hinton/absps/
JMLRdropout.pdf

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf








• Recent ConvNet architectures have 10 to 
20 layers of ReLUs, hun- dreds of millions 
of weights, and billions of connections 
between units. Whereas training such large 
networks could have taken weeks only two 
years ago, progress in hardware, software 
and algorithm parallelization have reduced 
training times to a few hours. 



• The performance of ConvNet-based vision 
systems has caused most major 
technology companies, including Google, 
Facebook, Microsoft, IBM, Yahoo!, Twitter 
and Adobe, as well as a quickly growing 
number of start-ups to initiate research and 
development projects and to deploy 
ConvNet-based image understanding 
products and services. 



• ConvNets are easily amenable to efficient 
hardware implemen- tations in chips or 
field-programmable gate arrays66,67. A 
number of companies such as NVIDIA, 
Mobileye, Intel, Qualcomm and Samsung 
are developing ConvNet chips to enable 
real-time vision applications in 
smartphones, cameras, robots and self-
driving cars. 



DISTRIBUTED REPRESENTATIONS AND 
LANGUAGE PROCESSING  



















RECURRENT NEURAL NETWORKS  




















