Deep Learning

Deep learning

Yann LeCun'*, Yoshua Bengio® & Geoffrey Hinton"’

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction, These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Multiple Processing Layers

* Deep learning allows computational
models that are composed of multiple
processing layers to learn
representations of data with multiple
levels of abstraction.

Applications

» Significant Improvement in speech
recognition, visual object recognition,
object detection and many other
domains such as drug discovery and
genomics.

Backpropagation

* Deep learning discovers intricate
structure in large data sets by using the
backpropagation algorithm to indicate
how a machine should change its
internal parameters that are used to
compute the representation in each
layer from the representation in the
previous layer

CNN

* Deep convolutional nets have brought
about breakthroughs in processing
images, video, speech and audio,
whereas recurrent nets have shone light
on sequential data such as text and

speech.

Applications in modern Society

Web searches
Content filtering on social net- works
Recommendations on e-commerce websites,

Consumer products such as cameras and
smartphones

Identify objects in images
Transcribe speech into text

Match news items, posts or products with
users’ interests

Select relevant results of search

Machine learning System

* Required careful engineering and
considerable domain expertise to design a
feature extractor

— Transform the raw data (such as the pixel
values of an image) into a suitable internal

representation or feature vector
* Detect or classity patterns in the input

Representation learning

* Discover the representations needed for
detection or classification

* Deep-learning methods are representation-
learning methods with multiple levels of
representation, obtained by composing
simple but non-linear modules that each
transform the representation at one level
(starting with the raw input) into a
representation at a higher, slightly more
abstract level

Very complex functions

» Composition of enough transformations

* The key aspect of deep learning is that
these layers of features are not designed
by human engineers: they are learned from
data using a general-purpose learning
procedure.

Deep Learning for Artificial Intelligence

* Discover intricate structures in high-dimensional
data and is therefore applicable to many
domains of science, business and government

* Beating records in image recognition
has beaten other machine-learning techniques
at predicting the activ- ity of potential drug
moleculesd, analysing particle accelerator
data®19, reconstructing brain circuits', and
predicting the effects of mutations in non-coding
DNA on gene expression and disease'2.13

* Natural language understanding™, particularly
topic classification, sentiment analysis,

qguestion answering’ and language translation

* Very little engineering by hand, so it can easily
take advantage of increases in the amount of
available computation and data. New learning
algorithms and architectures that are currently
being developed for deep neural networks will
only accelerate this progress

Supervised learning

* Alarge data set of images of houses, cars,

people and pets, each labelled with its
category.

* During training, the machine is shown an
iImage and produces an output in the form
of a vector of scores, one for each category.

* We want the desired category to have the
highest score of all categories, but this is
unlikely to happen before training

Objective Function

An objective function that measures the error (or
distance) between the output scores and the
desired pattern of scores.

The machine then modifies its internal adjustable
parameters to reduce this error.

These adjustable parameters, often called weights,
are real numbers that can be seen as ‘knobs’ that
define the input—output function of the machine.

In a typical deep-learning system, there may be
hundreds of millions of these adjustable weights,
and hundreds of millions of labelled examples with
which to train the machine.

Training

* To properly adjust the weight vector, the
learning algorithm computes a gradient
vector that, for each weight, indicates by
what amount the error would increase or
decrease if the weight were increased by a
tiny amount.

* The weight vector is then adjusted in the
opposite direction to the gradient vector

* The objective function, averaged over all
the training examples, can be seen as a
kind of hilly landscape in the high-
dimensional space of weight values.

* The negative gradient vector indicates the
direction of steepest descent in this
landscape, taking it closer to a minimum,
where the output error is low on average

Stochastic gradient descent (SGD)

* This consists of showing the input vector for a few
examples, computing the outputs and the errors,
computing the average gradient for those examples, and
adjusting the weights accordingly.

* The process is repeated for many small sets of examples
from the training set until the average of the objective
function stops decreasing.

* ltis called stochastic because each small set of examples
gives a noisy estimate of the average gradient over all
examples.

« This simple procedure usually finds a good set of weights
surprisingly quickly when compared with far more
elaborate optimization techniques

Testing

 After training, the performance of the
system is measured on a different set of
examples called a test set.

* This serves to test the generalization ability
of the machine — its ability to produce
sensible answers on new inputs that it has
never seen during training.

Input Hidden Output
) (2 sigmoid) (1 sigmoid)

Output units () (1)

Wi
Hidden units H2 Q‘ ‘0 @
Hidden units H1 ())
W..

)

Input units ()) ()

Yi = 1(Z)

Z; = 2 Wik Y
jeHI

yi =1(z)

Z; = }S Wij Xi

i & Input

d Compare outputs with correct
answer to get error derivatives

l l %“J’f‘t;

dE _ aE ay,

az, Ay 0z
aE aE
e 2 o
Yo jeout %4
oE _ oE ay,
azk (’yk rle f'E _ w f.‘E
LT kT
: q
Wi keHz2 Y%
aE _ aE dY;
az; ay; oz,

* In the late 1990s, neural nets and backpropagation
were largely forsaken by the machine-learning
community and ignored by the computer-vision and
speech-recognition communities.

* |t was widely thought that learning useful,
multistage, feature extractors with lit- tle prior
knowledge was infeasible.

* In particular, it was commonly thought that simple
gradient descent would get trapped in poor local
minima — weight configurations for which no small
change would reduce the average error.

In practice, poor local minima are rarely a problem with large
net- works.

Regardless of the initial conditions, the system nearly always
reaches solutions of very similar quality. Recent theoretical and
empirical results strongly suggest that local minima are not a
serious issue in general.

Instead, the landscape is packed with a combinato- rially large
number of saddle points where the gradient is zero, and the
surface curves up in most dimensions and curves down in the
emainder29.30, The analysis seems to show that saddle points
with only a few downward curving directions are present in
very large numbers, but almost all of them have very similar
values of the objec- tive function.

Hence, it does not much matter which of these saddle points
the algorithm gets stuck at.

Interest in deep feedforward networks was revived around 2006 (refs
31-34) by a group of researchers brou%ht together by the Cana- dian
Institute for Advanced Research (CIFAR).

The researchers intro- duced unsupervised learning procedures that
could create layers of feature detectors without requiring labelled data.
The objective in learning each layer of feature detectors was to be able
to reconstruct or model the activities of feature detectors (or raw inputs)

in the layer below.
By ‘pre-training’ several layers of progressiveli/1 more complex feature

detectors using this reconstruction objective, the weights of a deep
network could be initialized to sensible values.

A final layer of output units could then be added to the top of the
network and the whole deep system could be fine-tuned using standard
backpropaga- tion 33-35,

This worked remarkably well for recognizing handwritten digits or for
detecting pedestrians, especially when the amount of labelled data was
very limited36.

* The first major application of this pre-training approach
was in speech recognition, and it was made possible by
the advent of fast graphics processing units (GPUs) that
were convenient to program3’ and allowed researchers to
train networks 10 or 20 times faster.

* |n 2009, the approach was used to map short temporal
windows of coef- ficients extracted from a sound wave to
a set of probabilities for the various fragments of speech
that might be represented by the frame in the centre of
the window. It achieved record-breaking results on a
standard speech recognition benchmark that used a
small vocabu- lary38 and was quickly developed to give
record-breaking results on a large vocabulary taskse.

« Mohamed,A.-R.,Dahl,G.E.&Hinton,G.
Acoustic modeling using deep belief

networks. IEEE Trans. Audio Speech Lang.
Process. 20, 14—22 (2012).

* Dahl,G.E.,Yu,D.,Deng,L.&Acero,A.Context-
dependent pre-trained deep neural
networks for large vocabulary speech
recognition. IEEE Trans. Audio Speech
Lang. Process. 20, 33—42 (2012).

http://www.cs.toronto.edu/~asamir/

papers/speechDBN _jrnl.pdf

SUBMITTED TO IEEE TRANS. ON AUDIO, SPFEECH, AND LANGUAGE PROCESSING 1

Acoustic Modeling using Deep Belief Networks

Abdel-rahman Mohamed, George E. Dahl, and Geoffrey Hinton

Abstract—Gaussian mixture models are currently the domi-
nant technique for modeling the emission distribution of hidden
Markov models for speech recognition. We show that better
phone recognition on the TIMIT dataset can be achieved by
replacing Gaussian mixture models by deep neural networks
that contain many layers of features and a very large number
of parameters. These networks are first pre-trained as a multi-
layer generative model of a window of spectral feature vectors
without making use of any discriminative information. Once the
generative pre-training has designed the features, we perform
discriminative fine-tuning using backpropagation to adjust the
features slightly to make them better at predicting a probability
distribution over the states of monophone hidden Markov models.

Index Terms—Acoustic Modeling, deep belief networks, neural
networks, phone recognition

using a feature vector that describes segments of the temporal
cvolution of critical-band spectral densities within a single
critical band. Sub-word posterior probabilitics are estimated
using feedforward neural networks for each critical band and
these probabilities are merged to produce the final estimate
of the posterior probabilities using another feedforward neural
network. In [8], the split temporal context system is introduced
which modifies the TRAP system by including, in the middle
layer of the system, splits over time as well as over frequency
bands before the final merger neural network.
Feedforward neural networks offer several potential advan-
tages over GMMs:
o Their estimation of the posterior probabilities of HMM
states does not require detailed assumptions about the

Anta dictedhitinea

http://www.cs.toronto.edu/~asamir/papers/speechDBN_jrnl.pdf

for | = 1 : numbatches
batch = x(kk((l - 1) * opts.batchsize + 1 : | * opts.batchsize), :);

vl = batch:

hl = sigmrnd(repmat(rbm.c', opts.batchsize, 1) + vl * rbm.W');
v2 = sigmrnd(repmat(rbm.b’', opts.batchsize, 1) + hl * rbm.W);
h2 = sigm(repmat(rbm.c', opts.batchsize, 1) + v2 * rbom.W');

cl = hl"*vl;
c2 = h2'* v2;

rbm.vW = rbm.momentum * rbom.vW + rbm.alpha * (c1 - c2) / opts.batchsize;
rbm.vb = rbom.momentum * rbm.vb + rbm.alpha * sum(vl - v2)' / opts.batchsize;
rbm.vc = rbm.momentum * rbm.vc + rbm.alpha * sum(hl - h2)' / opts.batchsize;

rbm.W = rbm.W + rbm.vW;
rbm.b = rbm.b + rbm.vb;
rbm.c = rbm.c + rbm.vc;

err = err + sum(sum((vl - v2) .A 2)) / opts.batchsize;
end

p(hy =1| wB) = sigmoid(c; + 3, w;v)

/

p(v, =1|h6) = sigmoid(h + Y w;h)

J

v1 :input J

h1 : generated hidden state given v1i and W
v2 : reconstructed state of visible units
h2 : inferred hidden state

hidden

visible

The tied weights mean that the process of inferring h(?
from h(!) is the same as the process of generating v from
h(1), Consequently, h(?) can be viewed as a noisy but unbiased
estimate of the probabilities for the visible units predicted by
h(). Similarly h®® can be viewed as a noisy estimate of the
probabilities for the units in the first hidden layer predicted
by h(?). We can use these two facts and equation 9 to get an
unbiased estimate of the sum of the derivatives for the first
two layers of weights. This gives the following learning rule
which is known as “contrastive divergence” [10]:

Awi; o (BD (i = h®) +BP (AP - hP))
o (v:h)) — (R R (11)

where the angle brackets denote expectations over the training
data (or a representative mini-batch).

« By 2012, versions of the deep net from 2009 were
being developed by many of the major speech
groups® and were already being deployed in
Android phones. For smaller data sets,
unsupervised pre-training helps to prevent
overfitting49, leading to significantly better
generalization when the number of labelled exam-
ples is small, or in a transfer setting where we have
lots of examples for some ‘source’ tasks but very
few for some ‘target’ tasks. Once deep learning
had been rehabilitated, it turned out that the pre-
training stage was only needed for small data sets.

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); , .

B e B g i i S S e R e P et g g g R g e e

Convolutions and RelLU
""'A'""’”l;'oo""”"”’

Convolutions and RelLU

LT - - - - M L LT L L &

| Max pooling

|
|
|
A A A
| | |
| | |

matlab conv2 & convn

https://www.mathworks.com/help/matlab/ref/conv2.html?
requestedDomain=www.mathworks.com&requestedDomain=www.mathworks.com

In applications such as image processing, it can be useful to compare the
input of a convolution directly to the output. The conv2 function allows you to control the size of the output.

Create a 3-by-3 random matrix A and a 4-by-4 random matrix B. Compute the full convolution of A and B, which i

by-6 matrix.
A = rand(3);
B = rand(4);

Cfull = conv2(A,B)

Cfull =
0.7861 1.2768 1.4581 1.0007 0.2876 0.0099
1.0024 1.8458 3.0844 2.5151 1.5196 0.2560
1.0561 1.9824 3.5790 3.9432 2.9708 0.7587
1.6790 2.0772 3.0052 3.7511 2.7593 1.5129
0.9902 1.1000 2.4492 1.6082 1.7976 1.2655
0.1215 0.1469 1.0409 0.5540 0.6941 0.6499

https://www.mathworks.com/help/matlab/ref/conv2.html?requestedDomain=www.mathworks.com&requestedDomain=www.mathworks.com

=

e

>> (C=conv2(A,B)

C =

[oNoNoNoNoNO)

>> A

[oNoNo]

1111
2222
.3333
.3333
. 2222
1111

1111
1111
1111

[oNoNoNoNOoNO)

[oNoNO]

=

2222
.4444
.6667
.6667
L4444
.2222

1111
1111
1111

e

(oNoN N _NoNo)

[oNoNO]

.3333
.6667
.0000
.0000
.6667
.3333

L1111
L1111
L1111

oNoN N NoNOo)

.3333
.6667
.0000
.0000
.6667
.3333

@ @ @ @ @ @

2222
4444
.6667
.6667
4444
.2222

[oNoNoNoNoNO)

1111
2222
.3333
.3333
2222
.1111

>> (C=conv2(B,A, 'valid"')

C =

1.0000
1.0000

=

>> A

0.1111
0.1111
0.1111

e

1.0000
1.0000

= =

0.1111
0.1111
0.1111

=

0.1111
0.1111
0.1111

>>

3D convolution

>> A=0nes(3,3,3)
B=ones(4,4,4)
A=A/27
C=convn(B,A,'valid’)

Figure2llnside a convolutional network. The
outputs(not the filters) of each layer (horizontally)
of a typical convolutional network architecture
applied to the image of a Samoyed dog (bottom
left; and RGB (red, green, blue) inputs, bottom
right). Each rectangular image is a feature map
corresponding to the output for one of the learned
features, detected at each of the image positions.
Information flows bottom up, with lower-level
features acting as oriented edge detectors, and a
score is computed for each image class in output.
RelLU, rectified linear unit.

CNN for multiple arrays

* A colour image composed of three 2D
arrays containing pixel intensities in the
three colour channels.

* Many data modalities are in the form of
multiple arrays: 1D for signals and
sequences, including language; 2D for
images or audio spectrograms; and 3D for
video or volumetric images.

inputmaps = 1;
mapsize = size(squeeze(x(:, :, 1)));

for 1L = 1 : numel(net.layers) % layer
if strcmp(net.layers{l}.type, 's')
mapsize = mapsize / net.layers{l}.scale;
assert(all(floor(mapsize)==mapsize), ['Layer ' num2str(l) ' size
must be integer. Actual: ' num2str(mapsize)]);
for j = 1 : inputmaps
net.layers{l}.b{j} = 0;
end
end
if strcmp(net.layers{l}.type, 'c')
mapsize = mapsize - net.layers{l}.kernelsize + 1;
fan out net.layers{l}.outputmaps * net.layers{l}.kernelsize ™ 2;
for j = 1 : net.layers{l}.outputmaps % output map
fan in = inputmaps * net.layers{l}.kernelsize © 2;
for 1 = 1 : inputmaps % input map
net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) -
0.5) * 2 * sqrt(6 / (fan in + fan out));
end
net.layers{l}.b{j} = 0;
end
inputmaps = net.layers{l}.outputmaps;

end
end

inputmap

filters

.
HEEEN =
HENEN

mapsize=10-5+1
outputmaps

mapsize=6-3+1

inputmap
outputmaps

for j=1:outputmaps(l)

inputmaps=outputmaps(l-1)

T

for i=1:inputmaps

Initialize kernel(i,j) of
layer |

27

28

29
30

31
32
33
34
35
36
37

% 'onum' is the number of labels, that's why it is calculated using size(y,
1). If you have 20 labels so the output of the network will be 20 neurons.

% 'fvnum' is the number of output neurons at the last layer, the layer just
before the output layer.

% 'ffb' is the biases of the output neurons.

% 'ffW' is the weights between the last layer and the output neurons. Note
that the last layer is fully connected to the output layer, that's why the size
of the weights is (onum * fvnum)

fvnum = prod(mapsize) * inputmaps;

onum = size(y, 1);

net.ffb = zeros(onum, 1);

net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));
end

Outputmaps

Full connections

Full connections

¥
A4
4

c3,s2,c2,52

2D Convolution

overlapping moving of fiIte»rs

>> (C=conv2(B,A, 'valid')

=

1.0000
1.0000

= e

A =

0.1111
0.1111
0.1111

o

1.0000
1.0000

S

0.1111
0.1111
0.1111

e

0.1111
0.1111
0.1111

10-3+1

>>

Down Sampling

Non-overlapping moving
sampling

—_—

window

RBERE =

4\ Files v

MATLAB Drive CNN cnnff.m

function net = cnnff(net, Xx)
n = numel(net. layers);
net.layers{l}.a{l} = x;
inputmaps = 1;

ngaHSwWN =

O WO ~NO

o

13
14

15
16
17
18
19
20
21
22

23
24

25
26

for 1L =2 : n % for each layer

if strcmp(net.layers{l}.type, 'c'")
% !!below can probably be handled by insane matrix operations
for j = 1 : net.layers{l}.outputmaps % for each output map
% Ccreate temp output map
z = zeros(size(net.layers{l - 1}.a{l1l}) -

[net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);

for 1 = 1 : inputmaps % for each input map
% convolve with corresponding kernel and add to temp output

map
z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j},
'valid');
end
% add bias, pass through nonlinearity
net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j});
end % set number of input maps to this layers number of outputmaps
inputmaps = net.layers{l}.outputmaps;
elseif strcmp(net.layers{l}.type, 's')% downsample
for j = 1 : inputmaps
z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) /
(net.layers{l}.scale ~ 2), 'valid'); % !! replace with variable

net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 :

net.layers{l}.scale : end, :);

end
end

10
11

12
13

14

15
16
17
18
19

map

‘valid');

for

j=1":
% Ccreate temp output map

net.layers{l}.outputmaps % for each output map

z = zeros(size(net.layers{l - 1}.a{l}) -
[net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);

for i

%

z

end

(¢]

= 1 : inputmaps % for each input map
convolve with corresponding kernel and add to temp output

= z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j},

% add bias, pass through nonlinearity
net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j});
end % set number of input maps to this layers number of outputmaps

inputmaps

= net.layers{l}.outputmaps;

For some laver |

inputmap .
filters outputmaps

1]
_ - mmm w_
O

1]

for j=1:outputmaps(l)

il
kernel(2,2) T

\---
kernel(3,2 --

nputmaps=outputmaps(l-1)
|Set zero to z

z denotes stimuli |
k denotes filter
a denotes activation

for i=1:inputmaps layer(l).a(j)=sigm(z)

set h to convn of

layer(I-1).a(i) by kernel(i,j)
Add hto z

mapsize=6-3+1

input
nPUimEp filters outputmaps
| P
--- kernel(1,)) -

>> (C=conv2(B,A, 'valid"')

C =

1.0000
1.0000

=

>> A

0.1111
0.1111
0.1111

e

1.0000
1.Q000

0.1111
0.1111
0.1111

0.1111
0.1111
0.1111

>> A=ones(4,4)

A =

el
S

>> B=ones(3,3)

0.1111
0.1111
0.1111

(B

/9

0.1111
0.1111
0.1111

>> C=conv2(B,A, 'valid')

C =
\ []
B, big matrix

A, small matrix

=

0.1111
0.1111
0.1111

B, small matrix
A, big matrix

>>

>> B=ones(3,3)/9

B =
0.1111 0.1111
0.1111 0.1111
0.1111 0.1111

>> C=conv2(B,A, 'valid"')
C =
[]

>> (C=conv2(B,A, 'full')

¢ =
0.1111 0.2222
0.2222 0.4444
0.3333 0.6667
0.3333 0.6667
0.2222 0.4444
0.1111 0.2222

0.
0.
0.

oNoN N _NoNo)

1111
1111
1111

.3333
.6667
.0000
.0000
.6667
.3333

oNoN N o No)

.3333
.6667
.0000
.0000
.6667
.3333

[oNoNoNoNoNO)

2222
L4444
.6667
.6667
L4444
2222

[oNoNoNoNONO)

1111
2222
.3333
.3333
2222
1111

y denotes output of CNN

dy dy dy
da(7) " dz (7), dk(2,7)

1. Derivative of output with respect to activation ?
2. Derivative of output with respect to stimuli?
3. Derivative of output with respect to kernels?

for some layer |

dy
dz(j) dalj)

u(j)

pppppppp

The first term is denoted by v())

uuuuuuuuuu

derivative of
sigmoid

inputmap mapsize=6-3+1

filters outputmaps
\
kernel(1,1) o
z(i)

kernel(2,1) of next layer
dy

dy u(i)=

kernel(1,2)

kernel(3,2) --
]

2D Convolution 10-3+1

overlapping moves of fiIteLs X
A 1 2 3
—4 5 6 —>
7 89

Sampling by convolution

v A={ }

Position x on the activation map
contributes to only position X of the
resulting map through k(1)

2D Convolution

overlapping moves of fiIteLs 4
1
1 2 3
X — 4 5 6 —»
7 89

Sampling by convolution

v A={ }

Position x on the activation map
contributes to only positions with label
4 and 1 through k(4) and k(1)
respectively

N A~ =
o O1 N
© o W

2D Convolution 10-3+1

overlapping moves of filters

P

54
2 1
1 2 3
—4 5 6 —>
7 8 9

Sampling by convolution

A={ }

.There are four validly convoluted samples

that contain position X

.Position x on the activation map
contributes to only positions labeled 1,2,4

8 7 and5throughk(gs 4)
S 4 2 1
2 1

2D Convolution 10-3+1

overlapping moves of fiIteLs

X Sampling by convolution

A={ }

.There are 9 validly convoluted samples
that contain position X at entry (i,j)

.Position x on the activation map
contributes to positions labeled with 1-9

throughk(g9 g8 7)
5 4
2 1

N A=
® o N
© O W

W o ©
N O
S NN

6
3

Indices of layers are omitted. It is observed that a]i,j] contributes to

the frame BJi,j] through flipall(K) o g 7
6 5 4
3 2 1

~dy _ dy dB(ij)

da[z’,j] dB[] | da[] |

ay
| —~2 _flipall(k)
neges = d Bli,]

Bli,j], which is
denoted by VIi,j]

27

28 % concatenate all end layer feature maps into vector

29 net.fv = [];

30 for j = 1 : numel(net.layers{n}.a)

31 sa = size(net.layers{n}.a{j});

32 net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(l) * sa(2), sa(3))];
33 end

34 % Tfeedforward into output perceptrons

35 net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));

36

37 end

RERE T T410:04 C R 26%E
4\ Files v > KX »~
MATLAB Drive CNN cnnbp.m

1 function net = cnnbp(net, vy)

2 n = numel(net.layers);

3

4 % error

5 net.e = net.o - vy,;

6 % Loss function

7 net.L = 1/2* sum(net.e(:) .~ 2) / size(net.e, 2);

8

9 %% backprop deltas

10 net.od = net.e .* (net.o .* (1 - net.o)); % output delta

11 net.fvd = (net.ffW' * net.od); % feature vector delta

12 if strcmp(net.layers{n}.type, 'c") % only conv layers has sigm
function

13 net.fvd = net.fvd .* (net.fv .* (1 - net.fv));

14 end

15

16 % reshape feature vector deltas into output map style

17 sa = size(net.layers{n}.a{l});

18 fvnum = sa(l) * sa(2);

19 for j = 1 : numel(net.layers{n}.a)

20 net.layers{n}.d{j} = reshape(net.fvd(((j - 1) * fvnum + 1) : j *
fvnum, :), sa(l), sa(2), sa(3));

end

21

ay dy
’ dalt,j] dBli,j]

flipall(k)

23 for L =(n -1) : -1 : (EQZ)
24 if strcmp(net.layers{l}.type, 'c')

25 for j = 1 : numel(net.layers{l}.a)

26 net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 -

net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale
net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ©~ 2);

27 end
28 elseif strcmp(net.layers{l}.type, 's')
29 for 1 = 1 : numel(net.layers{l}.a)
30 z = zeros(size(net.layers{l}.a{1}));
31 for i =1 : numel(net.lavers{l + 1}.a)
32 z = z + convn(net.layers{l + 1}.d{j}, rotl80(net.layers{l +
13 k{i}{3}), full'); A
33 end ~ _ _
34 net.layers{l}.d{i} = z; [) == st 2 sias e sl
35 end a =
36 end /\ TR
27 end layers{l+1}.type ioe 8
Size? C >> flipdim(flipdim(a,l),2)
ans =

9
6
3

N U1 0o
Ll ~ |

Size=10-3+1

a n 2D Convolution h{n].}
overlapj;\g mo;ts of fiﬁers K {n}

123
———4 5 6—>

7 8 9

Sampling by convolution

} hin+1}3,7]

A=

A frame with it left-upper corner at Entry h’{n _l_ 1} — a{n} k{n}

(i,j) is weighted by the kernel

h{n+1}=a{ny'ki{ny

hin+1}i,jl=a{n} _s[i,j|*k{ny

dy _Z dy dhin—+1},7]
dkiny dhin+1]ij] dkiny

%]

Indices of layers are omitted

A frame with it left-upper corner at Entry
(i,j) is weighted by the kernel

h{ij]

h=a*K
h[i,jl=sum(sum(A[i,j].*K))

h=a*K
hi,jl=sum(sum(A[i,j].*K))

dy dh ,J
Z dhi,j]

= Z v[z,7]A[4,7

39
40
41
42
43
44

45
46

47
48
49
50
51
52
53
54
55
56
57

dy _ AT
ax o AR

%% calc gradients .
for 1 = 2g: n Size

if strcmp(net.layers{l}.type, 'c') of dk?

for j = 1 : numel(net.layers{l}.a)

for i =1 : numel(net.lavers{l - 1}.a)

net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l -

1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);

emnd

net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) /

size(net.layers{l}.d{j}, 3);

end

end
end >> a=[12 3;4 5 6;7 8 9]
end
net.dffW = net.od * (net.fv)' / size(net.od, 2); a =
net.dffb = mean(nntznd 2) - A . , .
K- 4 5 6
function X = rot 129 7 8 9
X = flipdim(7ss 2 — —
end 11123 ‘ >> flipdim(flipdim(a,1l),2)
7 89
R ans =
i
[i,]] 9 8 ;
. h=aK 6 5 4
e Ieﬁ;uppel; oo Er{try ; hii,jl=sum(sum(A[i,j]."K)) 3 2 1

(i,j) is weighted by the kernel

Al J]

Four key ideas behind ConvNets

local connections
shared weights
Pooling

the use of many layers

A series of stages Architecture

Units in a convolu- tional layer are organized in feature maps, within
which each unit is connected to local patches in the feature maps of
the previous layer through a set of weights called a filter bank.

The result of this local weighted sum is then passed through a non-
linearity such as a ReLU

All units in a feature map share the same filter bank. Differ- ent
feature maps in a layer use different filter banks

Convolutional layers
— the role of the convolutional layer is to detect local con- junctions of features
from the previous layer
Pooling layers.
— the role of the pooling layer is to merge semantically similar features into one

mapsize=6-3+1
filters outputmaps

/ - 77\\
kernel(1,1) ()

kernel(2,1)

inputmap

kernel(3,1)

kernel(1,2)

kernel(2,2)))
{ |
) ZH/

kernel(3,2)

* if @ motif can appear in one part of the
iImage, it could appear anywhere, hence
the idea of units at different locations
sharing the same weights and detecting the
same pattern in different parts of the array

* Mathemati- cally, the filtering operation
performed by a feature map is a discrete
convolution, hence the name.

* In array data such as images, local groups
of values are often highly correlated,
forming distinctive local motifs that are
easily detected.

* the local statistics of images and other
signals are invariant to location

* Atypical pooling unit computes the
maximum of a local patch of units in one
feature map (or in a few feature maps).
Neighbouring pooling units take input from
patches that are shifted by more than one
row or column, thereby reducing the
dimension of the representation and
creating an invariance to small shifts and
dis- tortions.

» Two or three stages of convolution, non-
linearity and pool- ing are stacked, followed
by more convolutional and fully-connected
layers. Backpropagating gradients through
a ConvNet is as simple as through a
regular deep network, allowing all the
weights in all the filter banks to be trained.

* Deep neural networks exploit the property that
many natural sig- nals are compositional
hierarchies, in which higher-level features are
obtained by composing lower-level ones. In
images, local combi- nations of edges form motifs,
motifs assemble into parts, and parts form objects.

« Similar hierarchies exist in speech and text from
sounds to phones, phonemes, syllables, words and
sentences.

* The pooling allows representations to vary very
little when elements in the previ- ous layer vary in
position and appearance.

simple cells and complex cells in visual neuroscience

* LGN-V1-V2-V4-IT hierarchy in the visual cortex

* ConvNets have their roots in the neocognitron46,
the architecture of which was somewhat similar,
but did not have an end-to-end supervised-
learning algorithm such as backpropagation

* A primitive 1D ConvNet called a time-delay
neural net was used for the recognition of
phonemes and simple words

IMAGE UNDERSTANDING WITH DEEP
CONVOLUTIONAL NETWORKS

» traffic sign recognition33, the segmentation
of biological images>4 particularly for
connectomics®S, and the detection of faces,
text, pedestrians and human bodies in
natural images3

* A major recent practical success of
ConvNets is face recognition®

Vision Language

Deep CNN Generating RNN

. A group of people

0 shopping at an outdoor
0 Pl market.

P — e

o o There are many

P) vegetables at the
@ fruit stand.

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a
mountain in the background

\

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with
trees in the background.

* Figure3lFromimagetotext. Captions generated by
a recurrentneural network (RNN) taking, as extra
iInput, the representation extracted by a deep
convolution neural network (CNN) from a test
iImage, with the RNN trained to ‘translate’ high-level
representations of images into captions (top).
Reproduced with permission from ref. 102,

* When the RNN is given the ability to focus its
attention on a different location in the input image
(middle and bottom; the lighter patches were given
more attention) as it generates each word (bold),
we foundss that it exploits this to achieve better
‘translation’ of images into captions.

* Importantly, images can be labelled at the
pixel level, which will have applications in
technology, including autonomous mobile

robots and
* self-driving cars

* ConvNets were largely forsaken by the
mainstream computer-vision and machine-
learning communities until the ImageNet
competition in 2012

 When deep convolutional networks were applied to a data
set of about a million images from the web that contained
1,000 different classes, they achieved spec- tacular
results, almost halving the error rates of the best compet-
iIng approaches!. This success came from the efficient use
of GPUs, RelLUs, a new regularization technique called
dropoutt2, and tech- niques to generate more training
examples by deforming the existing ones. This success
has brought about a revolution in computer vision;
ConvNets are now the dominant apgroach for almost all
recognition and detection tasks+:58.59.63-65 gand approach
human performance on some tasks.

* Arecent stunning demonstration combines ConvNets and
recurrent net modules for the generation of image
captions

 Srivastava,N.,Hinton,G. Krizhevsky,A.,Suts
kever,|l.&Salakhutdinov,R. Dropout: a
simple way to prevent neural networks
from overfitting. J. Machine Learning Res.
15, 1929-1958 (2014).

https://www.cs.toronto.edu/~hinton/absps/
JMLRdropout.pdf

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISH@CS. TORONTO.EDU
Geoffrey Hinton HINTON@CS. TORONTO.EDU
Alex Krizhevsky KRIZEGCS. TORONTO.EDU
Ilya Sutskever ILYA@CS. TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS. TORONTO.EDU

Department of Computer Science
University of Toronto

10 Kings College Road, Rm 3302
Toronto, Ontario, M55 3G4, Canada.

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

(a) Standard Neural Net (b) After applying dropout.

‘igure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

At test time, it is not feasible to explicitly average the predictions from exponentially
many thinned models. However, a very simple approximate averaging method works well in
practice. The idea is to use a single neural net at test time without dropout. The weights
of this network are scaled-down versions of the trained weights. If a unit is retained with
probability p during training, the outgoing weights of that unit are multiplied by p at test
time as shown in Figure 2. This ensures that for any hidden unit the ezpected output (under
the distribution used to drop units at training time) is the same as the actual output at
test time. By doing this scaling, 2" networks with shared weights can be combined into
a single neural network to be used at test time. We found that training a network with
dropout and using this approximate averaging method at test time leads to significantly
lower generalization error on a wide variety of classification problems compared to training
with other regularization methods.

* Recent ConvNet architectures have 10 to
20 layers of ReLLUs, hun- dreds of millions
of weights, and billions of connections
between units. Whereas training such large
networks could have taken weeks only two
years ago, progress in hardware, software
and algorithm parallelization have reduced
training times to a few hours.

* The performance of ConvNet-based vision
systems has caused most major
technology companies, including Google,
Facebook, Microsoft, IBM, Yahoo!, Twitter
and Adobe, as well as a quickly growing
number of start-ups to initiate research and
development projects and to deploy
ConvNet-based image understanding
products and services.

* ConvNets are easily amenable to efficient
hardware implemen- tations in chips or
field-programmable gate arrays66,67. A
number of companies such as NVIDIA,
Mobileye, Intel, Qualcomm and Samsung
are developing ConvNet chips to enable
real-time vision applications in
smartphones, cameras, robots and self-
driving cars.

DISTRIBUTED REPRESENTATIONS AND
LANGUAGE PROCESSING

Distributed representations and language processing
Deep-learning theory shows that deep nets have two different expo-
nential advantages over classic learning algorithms that do not use
distributed representations'. Both of these advantages arise from the
power of composition and depend on the underlying data-generating
distribution having an appropriate componential structure®. First,
learning distributed representations enable generalization to new
combinations of the values of learned features beyond those seen
during training (for example, 2" combinations are possible with n
binary features)®*®. Second, composing layers of representation in
a deep net brings the potential for another exponential advantage”
(exponential in the depth).

The hidden layers of a multilayer neural network learn to repre-
sent the network’s inputs in a way that makes it easy to predict the
target outputs. This is nicely demonstrated by training a multilayer
neural network to predict the next word in a sequence from a local

context of earlier words”'. Each word in the context is presented to
the network as a one-of-N vector, that is, one component has a value
of 1 and the rest are 0. In the first layer, each word creates a different
pattern of activations, or word vectors (Fig. 4). In alanguage model,
the other layers of the network learn to convert the input word vec-
tors into an output word vector for the predicted next word, which
can be used to predict the probability for any word in the vocabulary
to appear as the next word. The network learns word vectors that
contain many active components each of which can be interpreted
as a separate feature of the word, as was first demonstrated”” in the
context of learning distributed representations for symbols. These
semantic features were not explicitly present in the input. They were
discovered by the learning procedure as a good way of factorizing
the structured relationships between the input and output symbols

into multiple ‘micro-rules. Learning word vectors turned out to also
work very well when the word sequences come from a large corpus
of real text and the individual micro-rules are unreliable”’. When
trained to predict the next word in a news story, for example, the
learned word vectors for Tuesday and Wednesday are very similar, as
are the word vectors for Sweden and Norway. Such representations
are called distributed representations because their elements (the
features) are not mutually exclusive and their many configurations
correspond to the variations seen in the observed data. These word
vectors are composed of learned features that were not determined
ahead of time by experts, but automatically discovered by the neural
network. Vector representations of words learned from text are now
very widely used in natural language applications'*'""*7°,

The issue of representation lies at the heart of the debate between
the logic-inspired and the neural-network-inspired paradigms for
cognition. In the logic-inspired paradigm, an instance of a symbol is
something for which the only property is that it is either identical or
non-identical to other symbol instances. It has no internal structure
that is relevant to its use; and to reason with symbols, they must be
bound to the variables in judiciously chosen rules of inference. By
contrast, neural networks just use big activity vectors, big weight
matrices and scalar non-linearities to perform the type of fast ‘intui-
tive’ inference that underpins effortless commonsense reasoning.

Before the introduction of neural language models”’, the standard
approach to statistical modelling of language did not exploit distrib-
uted representations: it was based on counting frequencies of occur-
rences of short symbol sequences of length up to N (called N-grams).
The number of possible N-grams is on the order of V", where V is
the vocabulary size, so taking into account a context of more than a

handful of words would require very large training corpora. N-grams
treat each word as an atomic unit, so they cannot generalize across
semantically related sequences of words, whereas neural language
models can because they associate each word with a vector of real
valued features, and semantically related words end up close to each
other in that vector space (Fig. 4).

14 | body office
135 ¢
o8k Agency
13 }
~_ agencies
125 L organization
L institutions
12 organizations
Association
115 +
11 +
105 +
10 companies
0 sociedy
CoE‘c‘rqnurﬂﬁne% FpaRY; industry

Figure 4 | Visualizing the learned word vectors. On the left is an illustration
of word representations learned for modelling language, non-linearly projected
to 2D for visualization using the t-SNE algorithm'®. On the rightisa 2D
representation of phrases learned by an English-to-French encoder-decoder
recurrent neural network”. One can observe that semantically similar words

S UOL, e (WO groups

‘&-ﬂhstwogroup's” ol

qver the last two decades | ? o
26} the Iast two decades two months beforg being frreeess
s , - for nearly two months

jisputggHetween the two

34 b SR _thatafewdays Inafewmonths |
' | | - a few months:ago |
BB bt e within a few. months
i ? oVer the last few months
=38 - ~over the past few months -~
the next six months
-4 | ﬁ%‘etBSAP?é\LQH’a%YS L 1
-4.2 ; . ' " i éh—t-he—eeﬁamg—months

—0.0 -5 -4.5 -4 -3.5 -3 -2.5 -2
or sequences of words are mapped to nearby representations. The distributed
representations of words are obtained by using backpropagation to jointly learn
a representation for each word and a function that predicts a target quantity
such as the next word in a sequence (for language modelling) or a whole
sequence of translated words (for machine translation)'®”.

RECURRENT NEURAL NETWORKS

- w -

Figure 5 | A recurrent neural network and the untolding in time ot the
computation involved in its forward computation. The artificial neurons
(for example, hidden units grouped under node s with values s, at time ¢) get
inputs from other neurons at previous time steps (this is represented with the
black square, representing a delay of one time step, on the left). In this way, a
recurrent neural network can map an input sequence with elements x, into an
output sequence with elements o,, with each o, depending on all the previous
x/ (for t'<t). The same parameters (matrices U,V,W) are used at each time
step. Many other architectures are possible, including a variant in which the
network can generate a sequence of outputs (for example, words), each of
which is used as inputs for the next time step. The backpropagation algorithm
(Fig. 1) can be directly applied to the computational graph of the unfolded
network on the right, to compute the derivative of a total error (for example,
the log-probability of generating the right sequence of outputs) with respect to
all the states s,and all the parameters.

Instead of translating the meaning of a French sentence into an
English sentence, one can learn to ‘translate’ the meaning of an image
into an English sentence (Fig. 3). The encoder here is a deep Con-
vNet that converts the pixels into an activity vector in its last hidden
layer. The decoder is an RNN similar to the ones used for machine
translation and neural language modelling. There has been a surge of
interest in such systems recently (see examples mentioned in ref. 86).

RNNs, once unfolded in time (Fig. 5), can be seen as very deep
feedforward networks in which all the layers share the same weights.
Although their main purpose is to learn long-term dependencies,
theoretical and empirical evidence shows that it is difficult to learn
to store information for very long’®.

To correct for that, one idea is to augment the network with an
explicit memory. The first proposal of this kind is the long short-term
memory (LSTM) networks that use special hidden units, the natural
behaviour of which is to remember inputs for a long time”. A special
unit called the memory cell acts like an accumulator or a gated leaky
neuron: it has a connection to itself at the next time step that has a
weight of one, so it copies its own real-valued state and accumulates
the external signal, but this self-connection is multiplicatively gated
by another unit that learns to decide when to clear the content of the
memory.

LSTM networks have subsequently proved to be more effective
than conventional RNNs, especially when they have several layers for
each time step”’, enabling an entire speech recognition system that
goes all the way from acoustics to the sequence of characters in the
transcription. LSTM networks or related forms of gated units are also
currently used for the encoder and decoder networks that perform
so well at machine translation'”’>",

Over the past year, several authors have made different proposals to
augment RNNs with a memory module. Proposals include the Neural
Turing Machine in which the network is augmented by a “tape-like’
memory that the RNN can choose to read from or write to*’, and
memory networks, in which a regular network is augmented by a
kind of associative memory™. Memory networks have yielded excel-
lent performance on standard question-answering benchmarks. The
memory is used to remember the story about which the network is
later asked to answer questions.

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require
reasoning and symbol manipulation. Neural Turing machines can
be taught ‘algorithms’. Among other things, they can learn to output

a sorted list of symbols when their input consists of an unsorted
sequence in which each symbol is accompanied by a real value that
indicates its priority in the list**. Memory networks can be trained
to keep track of the state of the world in a setting similar to a text
adventure game and after reading a story, they can answer questions
that require complex inference™. In one test example, the network is
shown a 15-sentence version of the The Lord of the Rings and correctly
answers questions such as “where is Frodo now?”",

The future of deep learning

Unsupervised learning” ™ had a catalytic effect in reviving interest in
deep learning, but has since been overshadowed by the successes of
purely supervised learning. Although we have not focused on it in this
Review, we expect unsupervised learning to become far more important
in the longer term. Human and animal learning is largely unsupervised:
we discover the structure of the world by observing it, not by being told
the name of every object.

Human vision is an active process that sequentially samples the optic
array in an intelligent, task-specific way using a small, high-resolution
fovea with a large, low-resolution surround. We expect much of the
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform
passive vision systems” at classification tasks and produce impressive

results in learning to play many different video games'”.

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect
systems that use RNNs to understand sentences or whole documents
will become much better when they learn strategies for selectively
attending to one part at a time’**.

Ultimately, major progress in artificial intelligence will come about
through systems that combine representation learning with complex
reasoning. Although deep learning and simple reasoning have been
used for speech and handwriting recognition for a long time, new
paradigms are needed to replace rule-based manipulation of symbolic
expressions by operations on large vectors'"'. m

