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LETTER Communicated by Carsten Peterson

Natural Discriminant Analysis Using Interactive Potts Models

Jiann-Ming Wu

jmwu@server.am.ndhu.edu.tw

Department of Applied Mathematics, National Donghwa University, Shoufeng,
Hualien 941, Taiwan, Republic of China

Natural discriminant analysis based on interactive Potts modelsis devel-
oped in this work. A generative model composed of piece-wise multi-
variate gaussian distributions is used to characterize the input space, ex-
ploring the embedded clustering and mixing structures and developing
proper internal representations of input parameters. The maximization
of a log-likelihood function measuring the fitness of all input parameters
to the generative model, and the minimization of a design cost summing
up square errors between posterior outputs and desired outputs consti-
tutes a mathematical framework for discriminant analysis. We apply a
hybrid of the mean-field annealing and the gradient-descent methods to
the optimization of this framework and obtain multiple sets of interactive
dynamics, which realize coupled Potts models for discriminant analysis.
The new learning process is a whole process of component analysis, clus-
tering analysis, and labeling analysis. Its major improvement compared
to the radial basis function and the support vector machine is described
by using some artificial examples and a real-world application to breast
cancer diagnosis.


http://134.208.26.59/INA/PottsNDA.pdf
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Caffe Installation

Deep learning framework Prior to installing, have a glance through this guide and take note of the details for your platform.

by BAIR We install and run Caffe on Ubuntu 16.04-12.04, OS X 10.11-10.8, and through Docker and AWS.
The official Makefile and mMakefile.config build are complemented by a community CMake build.

Created by

Yanggqing Jia Step-by-step Instructions:

Lead Developer
Evan Shelhamer ® Docker setup out-of-the-box brewing

® Ubuntu installation the standard platform

View On GitHub ® Debian installation install caffe with a single command

e OS Xinstallation

® RHEL / CentOS / Fedora installation

® Windows see the Windows branch led by Guillaume Dumont
® OpenCL see the OpenCL branch led by Fabian Tschopp

® AWS AMI pre-configured for AWS

Overview:
® Prerequisites
e Compilation

e Hardware

When updating Caffe, it's best to make clean before re-compiling.

Prerequisites

Caffe has several dependencies:

® CUDA is required for GPU mode.


http://caffe.berkeleyvision.org/installation.html
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MatConVNet Getting Started ~ Functions ~ Contributing ~ Next < O GitHub

Matconet: CNNsforMaTLAB | MatConvNet: CNNs for MATLAB

Obtaining MatConvNet
Documentation Download Code & issues Pre-trained models Discussion forum
Extensions MatConvNet is a MATLAB toolbox implementing Convolutional Neural Networks (CNNs) for computer vision applications. It is

simple, efficient, and can run and learn state-of-the-art CNNs. Many pre-trained CNNs for image classification, segmentation, face

Getting started
recognition, and text detection are available.

Use cases

New: 1.0-beta25 released with a new modular system v1 _contrib for third-party contributions. A partial rewrite of the C++
code and support for recent CuDNN versions is also included.

Other information

New: 1.0-beta24 released with bugfixes, new examples, and utility functions.

New: 1.0-beta23 released with v1_nnroipool and a Fast-RCNN demo.

New: 1.0-beta22 released with a few bugfixes.

Obtaining MatConvNet

e [&) Tarball for version 1.0-beta25; older versions (& =& &)
e O GIT repository
e (¢ Citation

Documentation

e & Manual (PDF)

e - MATLAB functions
e ©@FAQ

o %) Discussion group

Extensions


http://www.vlfeat.org/matconvnet/

MIT CSALL COMPUTER
et 6.819/6.869: Advances in Computer Vision VISION

Fall 2015

[Home | Schedule | Course Materials | Final Project | Piazza | Stellar ]

Final Project

Final Project is an opportunity for you to apply what you have learned in class to a problem of your interest in computer vision. We strongly
recommand a team of 2-4 people (except for the survey, which should be individual-based). There are three project options you can pick from:

Report
Due: December 10, 2015

The report should be 4 - 6 pages (the upper limit of 6 pages is strict!) in CVPR format. It should be structured like a research paper, with
sections for Introduction, related work, the approach/algorithm, experimental results, conclusions and references.

You should describe and evaluate what you did in your project, which may not necessarily be what you hoped to do originally. A small result
described and evaluated well will earn more credit than an ambitious result where no aspect was done well. Be accurate in describing the
problem you tried to solve. Explain in detail your approach, and specify any simplifications or assumptions you have taken. Also demonstrate
the limitations of your approach. When doesn't it work? Why? What steps would you have taken have you continued working on it? Make sure to
add references to all related work you reviewed or used.

You are allowed to submit any supplementary material that you think it important to evaluate your work, however we do not guarantee that we
will review all of that material, and you should not assume that. The report should be self-contained.

Submission: submit your report to stellar as a pdf file named <YOUR_LAST_NAME>.pdf. Submit any supplementary material as a single zip
file named <YOUR_LAST_NAME>.zip. Add a README file describing the supplemental content.

Option 1: Mini Places Challenge.

Submission:
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Trace MatConvNet

% optionally switch to batch normalization
if opts.batchNormalization
net = insertBnorm(net, 1)
net = insertBnorm(net, 4)
net = insertBnorm(net, 7)
end

% Meta parameters

net.meta.inputSize = (28 28 1] ;
net.meta.trainOpts. learningRate = 9.001 ;
net.meta.trainOpts.numEpochs = 20 ;
net.meta.trainOpts.batchSize = 100 ;

function res = vi_simplenn(net, x, dzdy, res, varargin)
" %VL_SIMPLENN Evaluate a SimpleNN network.

%

L A

RES = VL_SIMPLENN(NET, X) evaluates the convnet NET on data X.

RES = VL_SIMPLENN(NET, X, DZDY) evaluates the convnent NET and its
derivative on data X and output derivative DZDY (foward+bacwkard pass).
RES = VL_SIMPLENN(NET, X, (], RES) evaluates the NET on X reusing the
structure RES.

RES = VL_SIMPLENN(NET, X, DZDY, RES) evaluates the NET on X and its
derivatives reusing the structure RES.

This function process networks using the SimpleNN wrapper

format. Such networks are ‘simple' in the sense that they consist
of a linear sequence of computational layers. You can use the
“dagnn.DagNN" wrapper for more complex topologies, or write your
own wrapper around MatConwNet computational blocks for even
greater flexibility.

MatConvNet

6.6.4 Softmax
Care must be taken in evaluating the exponential in order to avoid underflow or overflow.
The simplest way to do so is to divide the and de i by the exp ial of
the maximum value:
oA Tyt
Yk = D | oz
The derivative is given by:
d: d: 2
LV (e -1 — -2 -
o ); ™ (" L(%) " S pua) — LX) 2), LX) "Z‘r"".
Simplifying: B
dz dz dz
—_— — =Y ).
drya (va ,z.;dm )
In matrix form:

di (e (N
—YG)( (JYQY)II)

function tnet = v1_simplenn_tidy(net)
%VL_SIMPLENN_TIDY Fix an incomplete or outdated SimpleNN network.

P P P PP P KR P

NET = VL_SIMPLENN_TIDY(NET) takes the NET object and upgrades
it to the current version of MatConwNet. This is necessary in
order to allow MatConwNet to evolve, while maintaining the NET
objects clean. This function ignores custom layers.

The function is also generally useful to fill in missing default
values in NET.

See also: VL_SIMPLENN().

% Copyright (C) 2014-15 Andrea Vedaldi.
% ALl rights reserved.

Cnn_Mnist_Init.m

function [net, stats] = cnn_train(net, imdb, getBatch, varargin)

" %CNN_TRAIN An example implementation of SGD for training CNNs

E

RRRRRR PR PP

CNN_TRAIN() is an example learner implementing stochastic
gradient descent with momentum to train a CNN. It can be used
with different datasets and tasks by providing a suitable
getBatch function.

The function automatically restarts after each training epoch by
checkpointing.

The function supports training on CPU or on one or more GPUs
(specify the list of GPU IDs in the “gpus’ option).

Y = VL_NNSOFTMAX(X, C) applies the softmax operator followed by
the logistic loss the data X. X has dimension H x W x D x N,
packing N arrays of W x H D-dimensional vectors.

C contains the class labels, which should be integers in the range
1 to D. C can be an array with either N elements or with dimensions
H x Wx 1 x N dimensions. In the fist case, a given class label is
applied at all spatial locations; in the second case, different
class labels can be specified for different locations.

E = exp(bsxfun(@minus, X, max(X,[],3)))| ;
L = sum(E,3) ;
Y = bsxfun(@rdivide, E, L) ;

if nargin <= 1, return ; end

% backward
Y =Y .* bsxfun(@minus, dzdY, sum(dzdY .* Y, 3)) ;

function net = cnn_mnist_init(varargin)

% CNN_MNIST_LENET Initialize a (NN similar for MNIST
opts.batchNormalization = true ;

opts.networkType = 'simplenn’ ;

opts = vl_argparse(opts, varargin) ;

% Train for one epoch.
params = opts ;
params.epoch = epoch ;
params. learn.
params.train = opts.train(randperm(numel(opts.train))) ; % shuffle
params.train = params.train(1:min(opts.epochSize, numel(opts.train)));
params.val = opts.val(randperm(numel(opts.val))) ;

params.imdb = imdb ;

params.getBatch = getBatch ;

if numel(params.gpus) <= 1
[net, state] = processEpoch(net, state, params, 'train‘) ;
[net, state] = processEpoch(net, state, params, ‘val’) ;
if ~evaluateMode
saveState(modelPath(epoch), net, state) ;

end
.lutsuu = state.stats ;

exp(h,)
X, explhy)

e = opts.learningRate(min(epoch, numel(opts.learningRate))




A matrix for Latin Square .
Encoding Column major )

function B=LatinSquare(n) a=

% Latin are encoding
sau 1 2 3 4 5 6 7 8 9 l.@ﬂ 13 14 15 16

a=1:1:n"2;
A = reshape(a,n,n); >> reshape(B(11,:),4,4)
B = zeros(n"2,n"2); =11
fori=1n"2 ans = A=
r = mod(i,n);
ifr==0 9
r=n;
end
c=
% fprintf(*%d %d\n', r,c)
Is_c = A(;,c)';
ind_c = find(ls_c ~=i);
Is = [A(r;) Is_c(ind_c)}; > B(11,:)
Bli,ls) = 1;
end s =
°

expi)
B(i.:)* exp(h)
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expli)
B(i, :)* exp(h)

° 1 0

K>> squeeze(c(:,:,1,1:10))"

Multiplication of 4 D array Maxsoftloss

. . ans =
bsxfun(@times,S(:,:,1,:),C) K>> CX(1:10)
P - CX=squeeze(c(1,1,:)) ans =
l'ln- T T T T N T e - K>> ind = find(mass == 0)
298 - switch L.type
et m_ case ‘eonv' ’
:o rs.g;px‘t :Umeom(r!su).x, L.weights{1}, L.weights{2! 5 ind =
302 “stride’, L.stride, ... 1
m ‘::E::w \.:Jnu. ; K>> squeeze(mass(:,:,1,1:10))" 0x1 empty double column vector
305 cudnn{:}) ; 9 ans = K>> size(mass)
m‘-—-—- ‘ ans =
.:» 1x10 single row vector
xi [1x1x500x100 single] 1 1 1 100
G 1) 6 11 1 1
i
stats: K>> ¢_(1:10)
backwardTime: @
i ans =
Use the vl_nnconv function to implement
Multiplication of B to exp(h)
% compute softmaxloss -
xmax = max(x,[],3) ;
o emeaciiniontios, , 880) Back propagation
%n = sz(1)*sz(2) ; if nargin <= 2 case 'loss’ .
if nargin <= 2 t = xmax + log(sum(ex,3)) - reshape(x(c_), [sz(1:2) 1 sz(4)]) res(i).dzdx = vi_nnloss(res(i).x, l.class, res(i+1).dzdx) ;
Jog-loss or logistic loss. This loss combines the softmax block t = xmax + log(sum(ex,3)) - reshape(x(c_), [sz(1:2) 1 sz(4)]) ; y = sum(sum(sum(mass . t,1),2),4) ; case 'softmaxloss’

y = sum(sum(sum(mass .* t,1),2),4) ;
else

and the log-kes block into a single block: res(i).dzdx = vl_nnsoftmaxloss(res(i).x, l.class, res(i+1).dzdx)

el 3 =}
ay single rdivide, ex, sum(ex,3)) ;
1.5623 | - 1;
imes, y, bsxfun(@times, mass, dzdy)) ;

I g y = bsxfun(@rdivide, ex, sum(ex,3)) ; case '
£(x,c) = —log =z +logy e (47
T e B ylc) =ylc) - 1; if L {'leak', L.leak} ; else leak = {} ; end
! o y = bsxfun(Gtimes, y, bsxfun(Gtines, mass, dzdy)) ; ® end f ~iSempry e 0 ' ’ ’
o the b o with st e o antcmmatially rahenthe socue competer (o 0 end res(i).dzdx = vi_nnrelu(res(i).x, res(i+1).dzdx, leak{:}) ;

-h;hﬁ:-}i,rxf. >> size(res(i).x)

d also in the deprecated function v1_

C
ere
l(x,c) = —log —g—— = —w.+log ) ™.
€Tk Z 1 1 10 100

k=1 k=1

>> res(i+1).dzdx
X, denotes receptive fields of units with largest activations ns
=

1



% compute softmaxloss

xmax = max(x,[],3) ; o
ex = exp(bsxfun(@minus, x, xmax)) ;

%n = sz(1)*sz(2) ;

if nargin <= 2
t = xmax + log(sum(ex,3)) - reshape(x(c_), [sz(1:2) 1 sz(4)]) ;
lze- sum(sum(sum(mass .x t,1),2),4) ;

e

y = bsxfun(@rdivide, ex, sum(ex,3)) ;
ylc) = ylc) - 1;
u‘z = bsxfun(@times, y, bsxfun(@times, mass, dzdy)) ;
' dl(x, e
A0 __ 14 L

K>> size(y) dx, zk P
ans = dl(x,c) ejy
— -2 h
1 1 10 100 dx;, X, te
C
{(x,¢) = —log ——— =~z +log y_ e™. (4.7)
zk- k=1

Column major

1 2 3 4 5 6 7 8 9 l.@ll 13 14 15 16

>> reshape(B(11,:),4,4)

=11
ans = A=
s & 1 1 s 9 13
T 11 2 6 14
37 15
e o 1 o A b
__epth) X,
B(i. ) * exp(h) e
> B(11,1) e
ans = b, = (3.79.10.11,12,15) zkeb'

L] ° 1 0 Ll ° 1 ° 1 1 1 1 ° ° 1 °

% compute a_

A = latinsquare_list(squeeze(c)+l,:);
base = 0:16:1600-16;
A=A'+repmat(base’',1,4)";

a_=A(:);

The result y denotes derivative of loss with

OO OO OO S bt e

else
y = bsxfun(@rdivide, ex, sum(ex,3)) ;
yle) = y(c) - 1;
y = bsxfun(@times, y, bsxfun(@times, mass, dzdy)) ;
: 1x1x10x100 single ar

K>> squeeze(b(1:10))"
ans =

1x10 single row vector

to I fields of softm
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(x,0) = ~log g — =~z + log 3" ™. (7

I(x,A.B) = — Z log——

2 k=1
y = bsxfun(@rdivide, ex, sum(ex,3)) ;
yle ) = y(e ) - 1;
y = bsxfun(ftimes, y, bsxfun(@times, mass, dzdy)) ;
et exB=B"squeeze(ex);
zkeb €% term2 = log(exB(a_))'; * my

i€A
I(x,A,B) = Zx+ZlogZe"*
i€A keb,
= AX.A.B) et .
: : : o = l+2m"x‘. i€eA
HEH H X g
en’

A={36916) i=12€bynby

Latin square
encoding

exp(h)
B(i. :) * exp(h)

Zkebi et

Revise codes for LS
encoding

Let B=LatinSquare(n) denote an input matrix of SoftLSMaxLoss

Softmax changes to
SoftLatinSquareMax

A unit in location (i,j) of a 2D latin square has inhibitory units that locate at row i and
column j

How to evaluate outputs of softLSmax?

How to define softLSMaxLoss ?
How to calculate derivatives?

SoftLSMaxLoss

>1S=(0010;0100; 1000; 000 1)

LS =

c;=3.0=60c=9¢,=16
Let A collect active bits
A= (36916}

I(x,A,B) = — Z log———
* i Zkeb et

b, collects positions with active bits at the ith row of matrix B
by={1234.7.11.15})

o~
oo~
R
—-oo®

% compute softmaxloss

xmax = max(x,[],3) ;
ex = exp(bsxfun(@minus, x, xmax)) ;

%n = sz(l)tsz(2) H
if nargin <= 2
t = xmax + log(sum(ex,3)) - reshlpe(x(t:_). [sz(1:2) 1 sz(4)]) ;

y = si (sul(su(ns; > 1,1),2),4) ; ‘

Let a_ collect 400 ging from 1 to 1000
I(x,A,B) = — Z log———— ex.- ez = ogloxBla )
Ly €% toma =)

I(x,A,B) = — Zx +Zlog2e"ﬁ

i€A keb;
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gjl First artificial neurons: The McCulloch-Pitts model

)

ye{0,1}

I'n € {0.1}

This is where it all began..






Widrow’s ADALINE

1 (S—

Adaptive linear element (Adaline).

Nonlinear activation function
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Function Approximation Using Generalized Adalines

Jiann-Ming Wu, Zheng-Han Lin, and Pei-Hsun Hsu

Abstract—This paper proposes neural organization of general-
ized adalines (gadalines) for data driven function approximation.
By generalizing the threshold function of adalines, we achieve the
K -state transfer function of gadalines which responds a unitary
vector of K binary values to the projection of a predictor on a
receptive field. A generative component that uses the K -state ac-
tivation of a gadaline to trigger K posterior independent normal
variables is employed to emulate stochastic predictor-oriented
target generation. The fitness of a generative component to a set
of paired data mathematically translates to a mixed integer and
linear programming. Since consisting of continuous and discrete
variables, the mathematical framework is resolved by a hybrid of
the mean field annealing and gradient descent methods. Following
the leave-one-out learning strategy, the obtained learning method
is extended for optimizing multiple generative components. The
learning result leads to parameters of a deterministic gadaline net-
work for function approximation. Numerical simulations further
test the proposed learning method with paired data oriented from
a variety of target functions. The result shows that the proposed
learning method outperforms the MLP and RBF learning methods
for data driven function approximation.

Index Terms—Adalines, generative models, mean field an-
nealing, perceptron, postnonlinear projection, potts encoding,
supervised learning.

This paper explores data driven function approximation [5]
based on generalized adalines. The novel neural organization
is devised by generalizing the threshold function to K-state
transfer function, which transforms its input to a K -state acti-
vation, represented by elementsin Zx = {el, ..., e}, where
el is a unitary vector with the kth bit one and the others zero.
A K-state transfer function uses A built-in knots to partition its
domain to K nonoverlapping intervals so as to represent the ex-
clusive membership of its input to &K nonoverlapping intervals
by a K -state activation. By replacing the threshold function of
an adaline with a K -state transfer function, we have the general-
ized adaline (gadaline) for constructing novel neural networks.

Internal representations based on K -state activations im-
pact on organizing and learning neural networks for data
driven function approximation. Relevant issues are explored
by addressing stochastic modeling of predictor-oriented target
generation using gadalines. Following the idea, the K -state
activation of a gadaline in response to a predictor is employed
to trigger one of A independent normal variables or generators
to produce an instance in approximating the desired target.
The obtained generative component is organized to perform
consecutive operations of projecting the predictor on a recep-


http://134.208.26.59/INA/FAgadaline.pdf

hlt] = w! x][t] (1)

then employ the following threshold function to encode the ex-
ternal field:

1, if h{t] > 0

O(hlt]) = { —1, otherwise. (2)
To facilitate our presentations, we set x4|[t] to one for all £ so
as to represent an arbitrary hyperplane in R%~! by (1) in the

following contexts.



Adaline networks

sign(x; + x,) + sign(x1 — x2)

. 3. Typical adaline network.



B 4 B8R39 e (?) @@ QSearch Docum
‘E}L EEZI 5 (= Find Files & ﬂ [iz, New Variable E‘LA? | <7 Analyze Code er 1% {0} Preferences éé @ #§ Co
New

EDITOR PUBLISH

[ HOME

- [i» Open Variable v &f Run and Time [ Set Path 5" Re
New New Open 1=/ Compare Import Save Favorites Simulink  Layout Add-Ons  Help
Script Live Script ¥ v : Data Workspace [ Clear Workspace ¥ v |4 Clear Commands ¥ v ml Parallel ¥ v v Le:
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOL
<@ = 5] gl = 9/ » Users » apple » Desktop * Jiann-Ming Wu » code2019 » code2006 » Apps * FunAppr » FA2D »
Current Folder (¥ Editor - /Users/apple/Desktop/Jiann-Ming Wu/code2019/code2006/Apps/FunAppr/FA2D/MLP_Tool.m m x
B Name & +11 | call_learning_en.m = | remoteparfor.m plot_subface.m | demo_faceNet_p4 plot.m | MLP_Tool.m | + |
#') fa2D_printingMGF_MLPot... = j = - - [ plot " - e - ” L%D
#') fa2D_RBF.m ® MLP _Tool

il fa3D_MLPotts.asv

#’) fa3D_MLPotts.m

%' findabr.m

M gradient_m6.asv

£ gradient_m6.m

#') Gradient_MLPotts.m
hs_err_pid7332.log

%) image2data.m

£ KState.m

%' learn_MLP.m

M Im6.asv

B LM_MLPotts_fun.asv

%) LM_MLPotts_fun.m

B MLP_Tool.asv
MLP_Tool.ctf

" MLP_Tool.exe

# MLP_Tool.fig

£ MLP_Tool.m

¢ mlp_tool_main.c

¢ mlp_tool_mcc_compone...

¢ mlpotts_main.c

C

|

MLP learning for
Function Appximation (JM Wu)

111

111l

Target Function

LI nml

sign(x1+x2)-sign(x1-x2)

111

Process

W T VR EEER YRR T VR R VR EEE W R, TR R VR R VR N Y N

Sampling Size 300

Ol

HP Fit
mlpotts_mcc_componen...
MLPotts_tool.ctf
¥ Ml Potts tool.exe
' W M
MLP_Tool.m (Function) MLP Fit 30

M-file for MLP_Tool.fig

€ MLP_Tool(varargin)

€3 MLP_Tool_OpeningFcn(h...

€ MLP_Tool_OutputFcn(hOb...

€3 editl_Callback(hObject, e...

€3 editl_CreateFcn(hObject, ... _]




A stochastic threshold function

1s defined to have a stochastic

output in response to an external

| field h. Let s denote a dis-

crete random variable corresponding to the output of a stochastic
threshold function. Since s depends on the external field, the
conditional pdf of s to A is assumed proportional to exp(/3hs),

such as

Pr(s|h) o< exp(Bhs) se{-1,1}

where (3 1s a positive parameter

for modulating randomness.

Since the outcome of s 1s bipolar, by normalization, we have

the following conditional pdf:
Pr(s|h) =

exp(Shs)

exp(fh) + exp(—ph)



When h = h|t], the expectation of s is expressed as follows:

g(hlt]) = (s|h = hlt])

= Pr(s = 1|h = h[t]) — Pr(s =
_ exp(Bhit]) — exp(—hit)
exp(hlt]) + exp(—pGht])

— tanh(Gh[t]).

“1|h = h[H])

(3)



tanh( /)

Fig. 2. Perceptron.
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Gradients back-propagating

Letter | Published: 09 October 1986

Learning representations by back-
propagating errors
David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature 323,533-536 (1986) | Download Citation X

20k Accesses | 7688 Citations | 166 Altmetric | Metrics »

Abstract

We describe a new learning procedure, back-propagation, for networks of
neurone-like units. The procedure repeatedly adjusts the weights of the
connections in the network so as to minimize a measure of the difference
between the actual output vector of the net and the desired output vector.
As a result of the weight adjustments, internal ‘hidden’ units which are not
part of the input or output come to represent important features of the task
domain, and the regularities in the task are captured by the interactions of
these units. The ability to create useful new features distinguishes back-
propagation from earlier, simpler methods such as the perceptron-

convergence procedure!,


https://www.nature.com/articles/323533a0

Multilayer perceptrons (MLP)
(Rumelhart, 1986)

tanh N\\
-tanh r\®
2

Mv+1

y = f(x) = Z ritanh(aiTx + b)) + 1,

l



Multiple Inputs Multiple
Outputs

tanh




A Deep Neural Network with two hidden layers

Feedforward propagating

h, X h, X,

h, = w;x, h, = wyx, y = hy = W3X,

x; = f(h)) X, = f(h,)




Gradients back-propagation
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Xy —» ‘_.

single output
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x = f(h) = tanh(h)
h=[h,... h1

X = [xl, . .,Xn]T

dx; ,
= 1 — tanh~(h,)
dh,;

>> h = sym('h'); diff(tanh(h))
ans =

1 - tanh(h)"2



Multi-state Potts
Neurons



NEUROCOMPUTING

Neurocomputing
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Annealed cooperative—competitive
learning of Mahalanobis-NRBF neural
modules for nonlinear and chaotic
differential function approximation

Jiann-Ming Wu & &, Chun-Chang Wu, Ching-Wen Huang

Show more

https://doi.org/10.1016/j.neucom.2014.01.031 Get rights and content

Abstract

This work explores annealed cooperative—competitive learning of
multiple modules of Mahalanobis normalized radial basis functions
(NRBF) with applications to nonlinear function approximation and
chaotic differential function approximation. A multilayer neural
network is extended to be composed of multiple Mahalanobis-NRBF


http://www.sciencedirect.com/science/article/pii/S0925231214002252

LETTER Communicated by Carsten Peterson

Natural Discriminant Analysis Using Interactive Potts Models

Jiann-Ming Wu

jmwu@server.am.ndhu.edu.tw

Department of Applied Mathematics, National Donghwa University, Shoufeng,
Hualien 941, Taiwan, Republic of China

Natural discriminant analysis based on interactive Potts modelsis devel-
oped in this work. A generative model composed of piece-wise multi-
variate gaussian distributions is used to characterize the input space, ex-
ploring the embedded clustering and mixing structures and developing
proper internal representations of input parameters. The maximization
of a log-likelihood function measuring the fitness of all input parameters
to the generative model, and the minimization of a design cost summing
up square errors between posterior outputs and desired outputs consti-
tutes a mathematical framework for discriminant analysis. We apply a
hybrid of the mean-field annealing and the gradient-descent methods to
the optimization of this framework and obtain multiple sets of interactive
dynamics, which realize coupled Potts models for discriminant analysis.
The new learning process is a whole process of component analysis, clus-
tering analysis, and labeling analysis. Its major improvement compared
to the radial basis function and the support vector machine is described
by using some artificial examples and a real-world application to breast
cancer diagnosis.
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v, denotes the probability of being the state m
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it follows

exp(— fhm)
Y.iexp(—phj)

Vi = @, (X) =



Neural Organization

Adaline
Perceptron
Receptive field
Adaptive filter
Receptive field
Linear projection
Sigmoid function

Threshold function

Radial basis function
Normalization
Bilinear

Winner take all

Relu

Convolution

Batch normalization
Lattice structure

A generative model



CDFA(Chaitic differential FA) : Mackey-Glass 17

0X ax(t—r7)

— bx(0),

ot 1+x(t—1)
t=17,a=0.2,c=10and b =0.1

M. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science
197 (1977) 287.



Mackey-Glass 30

0X ax(t—r7) _bx(D)

ot — 1+X(t—71)
r=30 a=02,c=10and b=0.1




CDFA: Nonlinear delay differential

| |
=10 alf
-

0X 3
E_x(t—r)—x (1—7),

where the delav 7 is set to 1.6.

J.C. Sprott, A simple chaotic delay differential equation, Phys. Lett. A 366
(2007) 397-402.



Chaotic differential function approximation
using Multilayer N rural Networks

e Cechin, Pechmann, Oliveira, Chaos
Solitons Fractal (2008)

o Mirzaee, Chaos Solitons Fractal (2009)

» Moody, Darken, Neural Computation
(1989)

e Lin, Horne, Tino, IEEE Trans. Neural
Netw. (1996)




CDFA: goal and methodologies

o Goal

e Long term look-ahead prediction
 Methodology

o Data driven approaches

» Recurrence relation modeling

o Supervised learning of multilayer
neural networks




Data driven long-term prediction

o MG(Mackey—Glass) 17 generated by
RK(Runge-Kutta) 4

Predlctlon of

i N ~ .instances
o Lat step 500-700

500 0

500 520 540 640 660 680 700

200-step-look-ahead predlctlon




Nonlinear Recurrent Relation Modeling
based on nonlinear function approximation

Fy (X;OI)\

F,(x;0,) >

Wi-L]

yi-L+1] Fﬁ (X;OK

T
O¢ :f(Xt — (Ot—La Ol’—L-l-]a R Ot—l) )9



One-dimensional convolution

y[i + 2]

y[i+ 1]

Wil

- A deep neural network filter Z[i]

Mi-L]

z[i — 1]

Vi-L+1]




