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The objective of this paper is self-supervised learning of spatio-temporal 
embeddings from video, suitable for human action recognition. We make three 
contributions: First, we introduce the Dense Predictive Coding (DPC) 
framework for self-supervised representation learning on videos. This learns a 
dense encoding of spatio-temporal blocks by recurrently predicting future 
representations; Second, we propose a curriculum training scheme to predict 
further into the future with progressively less temporal context. This 
encourages the model to only encode slowly varying spatial-temporal signals, 
therefore leading to semantic representations; Third, we evaluate the approach 
by first training the DPC model on the Kinetics-400 dataset with self-supervised 
learning, and then finetuning the representation on a downstream task, i.e. 
action recognition. With single stream (RGB only), DPC pretrained 
representations achieve state-of-the-art self-supervised performance on both 
UCF101(75.7% top1 acc) and HMDB51(35.7% top1 acc), outperforming all 
previous learning methods by a significant margin, and approaching the 
performance of a baseline pre-trained on ImageNet. 
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Abstract

The objective of this paper is self-supervised learning of 
feature embeddings that are suitable for matching 
correspondences along the videos, which we term 
correspondence flow. By leveraging the natural spatial-
temporal coherence in videos, we propose to train a 
“pointer” that reconstructs a target frame by copying pixels 
from a reference frame. 

We make the following contributions: First, we introduce a 
simple information bottleneck that forces the model to learn 
robust features for correspondence matching, and prevent it 
from learning trivial solutions, e.g. matching based on low-
level colour information. Second, to tackle the challenges 
from tracker drifting, due to complex object deformations, 
illumination changes and occlusions, we propose to train a 
recursive model over long temporal windows with 
scheduled sampling and cycle consistency. Third, we 
achieve state-of-the-art performance on DAVIS 2017 video 
segmentation and JHMDB keypoint tracking tasks, 
outperforming all previous self-supervised learning 
approaches by a significant margin. Fourth, in order to shed 
light on the potential of self-supervised learning on the task 
of video correspondence flow, we probe the upper bound 
by training on additional data, i.e. more diverse videos, 
further demonstrating significant improvements on video 
segmentation.
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