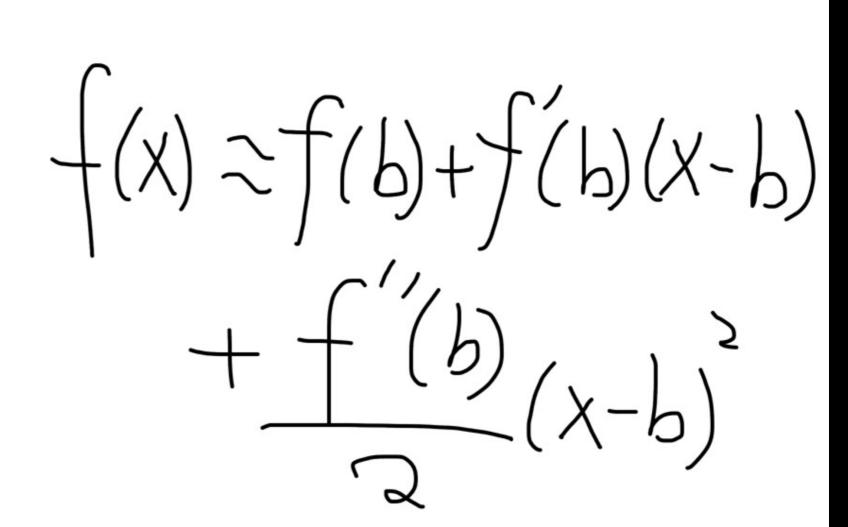


Implementation of Nonlinear CG method

Expansion at x = b

Root at b The second term is zero



Root at x=b

The third term is negligible for some positive small ε if

 $\frac{1}{5} f'(b)(\chi - b)^{2} < \epsilon \cdot f(b)$ $\frac{|x-b|}{|b|} < \frac{|x-b|}{|x-b|} < \frac{|x-b|}{|x-$

Halting condition

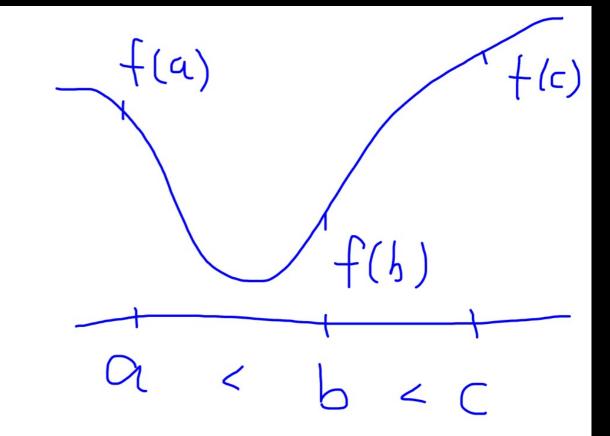
- The reason for writing the inequality in this way is that the left hand side is the relative error in , and that for most functions, the final square root is a number of order unity.
- Therefore, as a rule of thumb, it is hopeless to ask for bracketing with a width of less than $\sqrt{\epsilon}$. Knowing this inescapable fact will save you a lot of useless bisection!

Choose a new x

• a,b and c define a bracket

$$\frac{b-a}{c-a} = W$$
$$\frac{c-b}{c-b} = 1-W$$

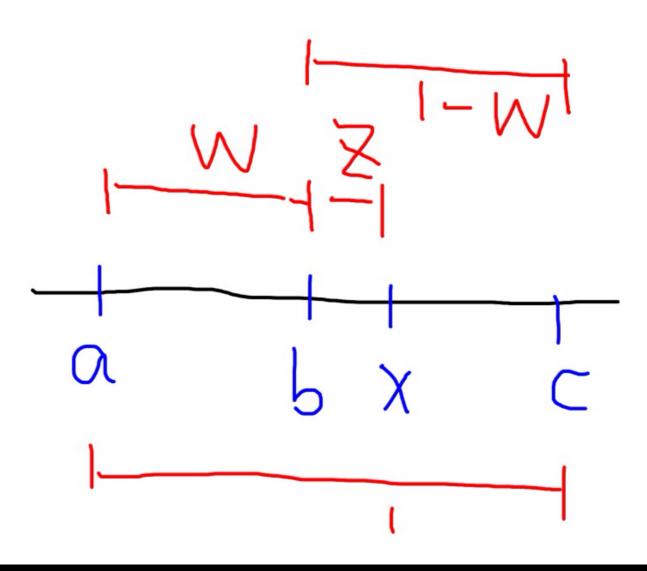
$$\frac{x-b}{c-a} = Z$$



Next two intervals

 The length of the next bracket will be W+Z or 1-W

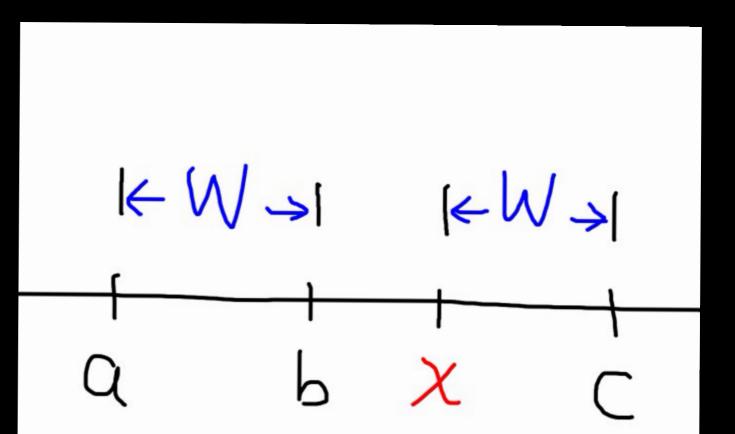
$$W + Z = I - W$$
$$Z = I - ZW$$



Choose a new x

the new point is the symmetric point to b in the interval, namely with |b-a| equal to |c-x|.

W < 1/2 X lies on the larger segment



To maintain a constant ratio

- The next bracket will be in length of 1-W
- a,b,x or b,x,c

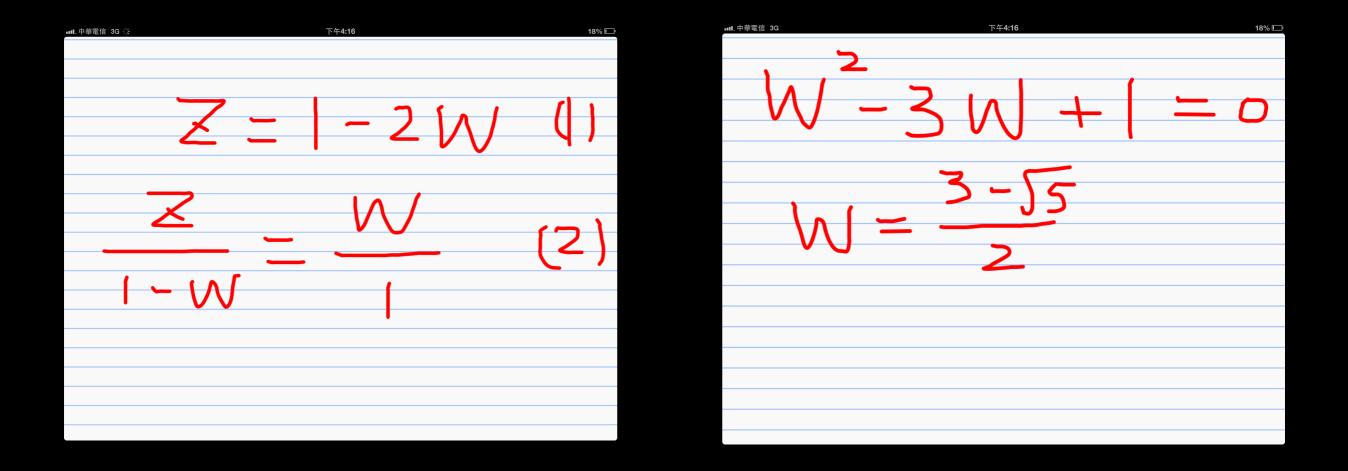
$$\frac{Z}{1-W} = \frac{W}{1}$$

$$|\mathcal{E} W \rightarrow | \mathbb{Z}_{|\mathcal{E} W \rightarrow |}$$

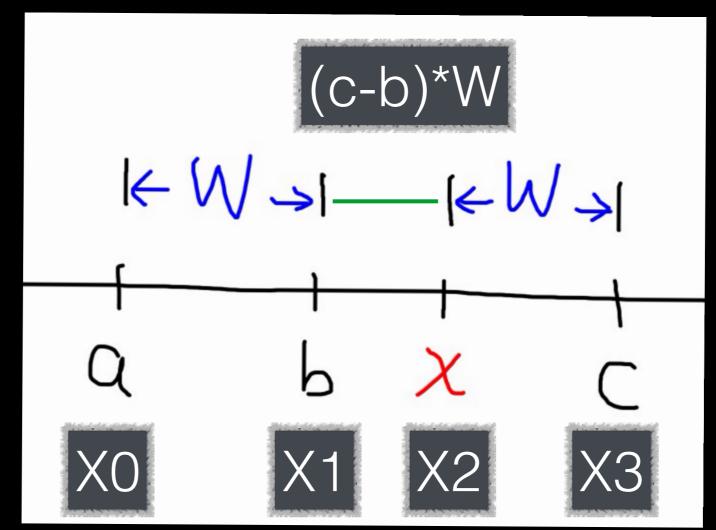
$$- (\mathcal{E} W \rightarrow | \mathcal{E} W \rightarrow | \mathcal{E} W \rightarrow |$$

$$- (\mathcal{E} W \rightarrow | \mathcal{E} W \rightarrow | \mathcal$$

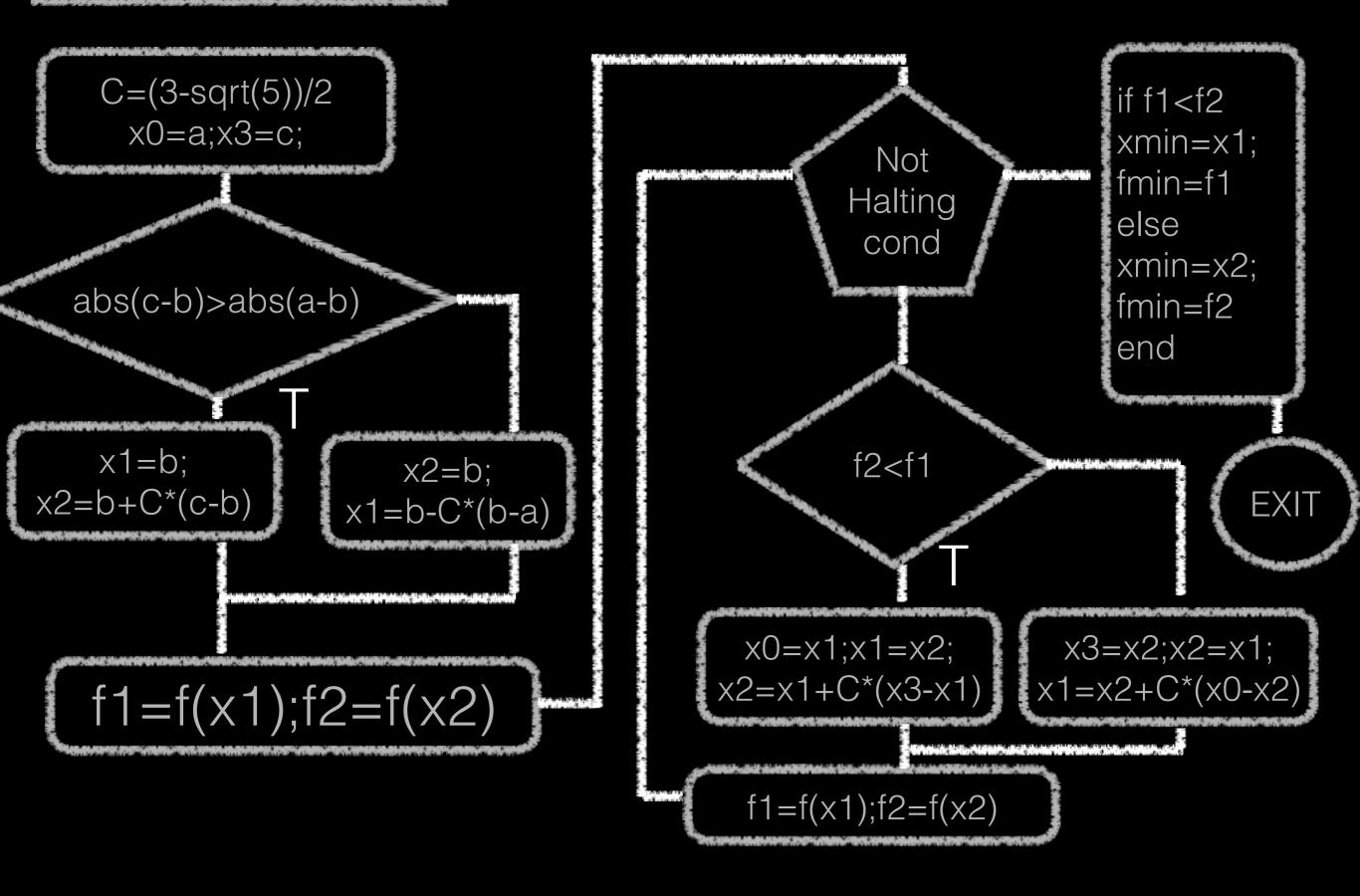
Why golden ratio?



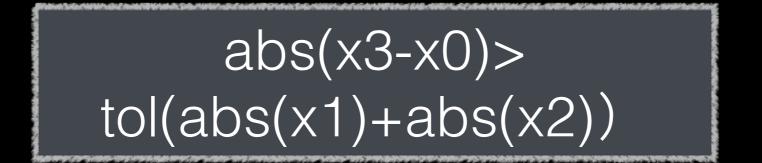
Setting



function Brent (a,b,c,f)



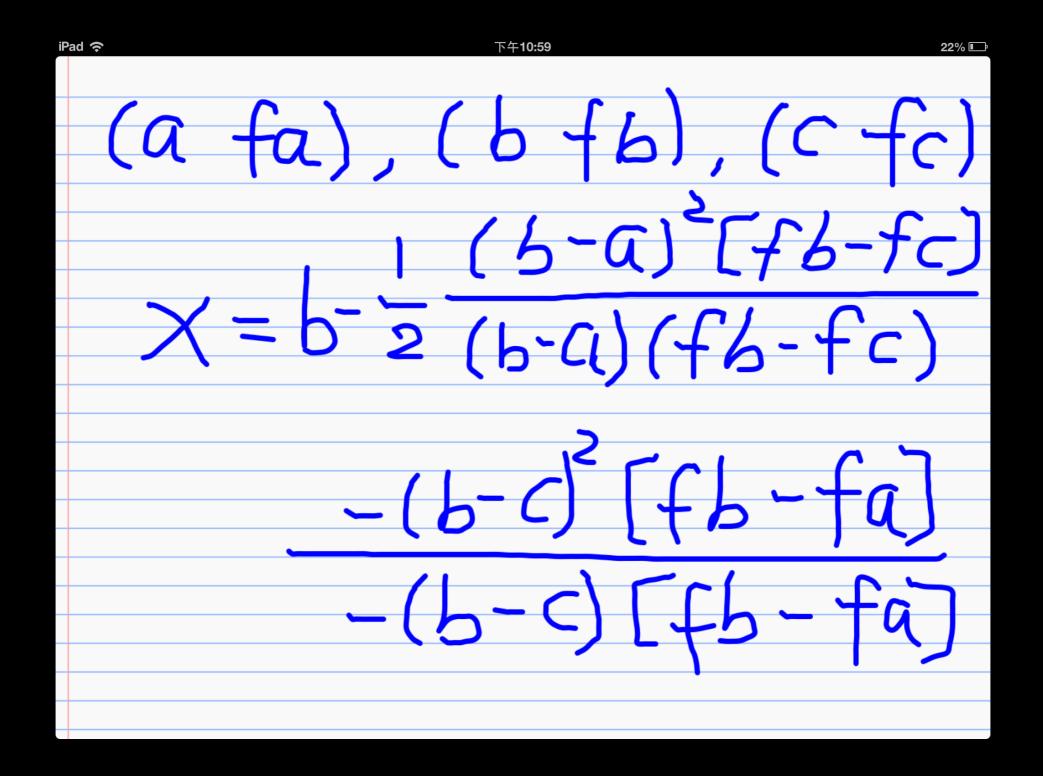
Halting condition



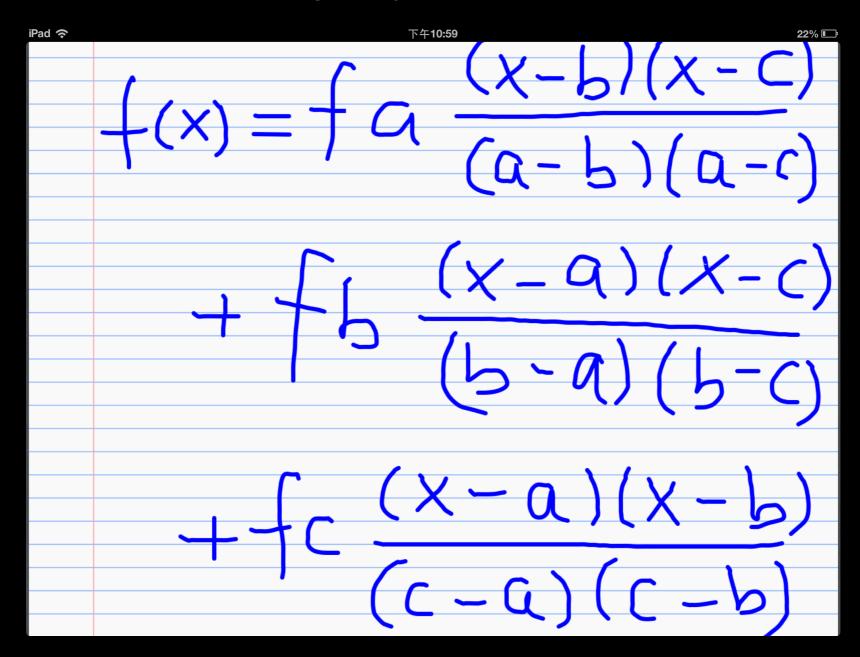
Parabolic interpolation

- A quadratic polynomial that passes (a fa), (b fb) and (c fc)
- Find the minimum

How to select x

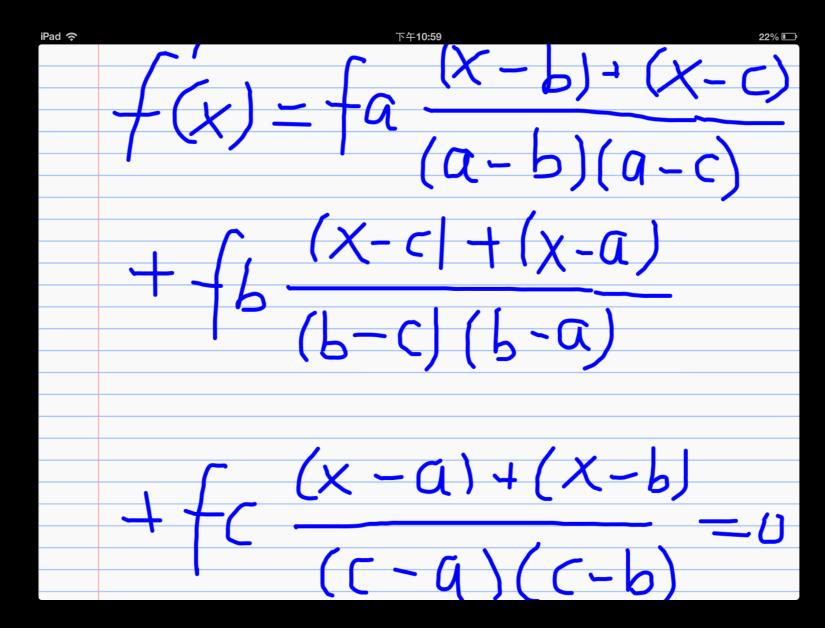


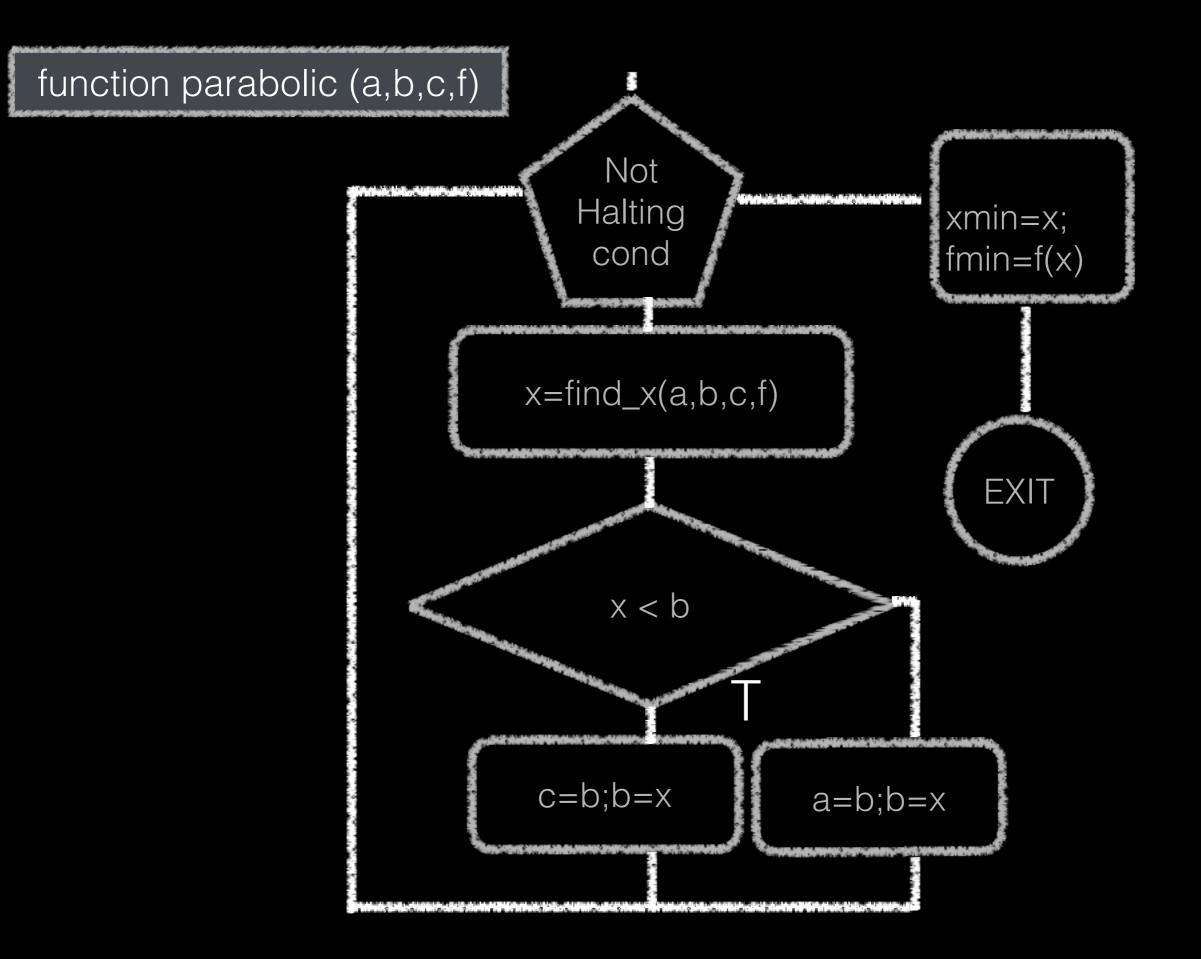
Quadratic polynomial A linear combination of three Lagrange polynomials



Find the minimum

 Set zero to the interpolating quadratic polynomial





mnbrak.m

mnbrak.m linmin.m linmin.m

Routine for Initially Bracketing a Minimum

 A minimum is known to be bracketed only when there is a triplet of points, a < b<c, such that f(b) is less than both f(a) and f(b).

a < b, fa > b $C \leftarrow b + G(b - a)$ $UL \leftarrow b + (o \cup o (C - b))$ $\leftarrow m_1 n_2(a, b, c)$,C)

a<b,fa>tb $\left(a, b, u \right)$ $V \leftarrow U + G(U - c)$ (C, U, V)

a<b,fa> Ь $(iii) U \leftarrow UL$ (b, c, u)(11) $U \leftarrow C + G(C - b)$ (b, C, U)

Casei

Two situations in case i return a bracket The other situations need further iterations for bracketing

Routines

- Switch roles of a and b such that fa > fb
- First guess for c.
- While not HC
 - Compute u by parabolic extrapolation from a, b, c.
 TINY is used to prevent any possible division by zero.
 - u in (b, c)
 - fc > fu : return (b,u,c)
 - fb < fu : return (a,b,u)
 - u in (c, uL) : v <- c+G(u-c); (a,b,c) <- (c,u,v)
 - Parabolic fit is between c and its limit.
 - u > uL: u <- uL; (a,b,c) <- (b,c,u)
 - %Reject parabolic u, use default magnification.
 - %Limit parabolic u to maximum allowed value.
 - u< b
 - Eliminate oldest point and continue.

mnbrak.m

mnbrak.m

http://meteo.macc.unican.es/prometeo/temp/carmen/07_NNMeteo/dani/ viento_ordenado/toolboxes/adaboost/@rbf_net_w/private/mnbrak.m

linmin.m

http://meteo.macc.unican.es/prometeo/temp/carmen/07_NNMeteo/ dani/viento_ordenado/toolboxes/adaboost/@rbf_net_w/private/linmin.m

linmin.m

http://www.wiley.com/legacy/wileychi/koopbayesian/supp/linmin.m