Numerical Analysis

11/12/2012

- 1. Let **A** be a n-by-n symmetric matrix. Let $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all \mathbf{x} in \mathbb{R}^n . Vectors \mathbf{p}_i and \mathbf{p}_j are conjugate if $\langle \mathbf{p}_i, \mathbf{p}_j \rangle_A \equiv \mathbf{p}_i^T \mathbf{A} \mathbf{p}_j = 0$. Suppose $\{\mathbf{p}_j\}_{j=1}^n$ is a sequence of n mutually conjugate directions.
 - (a) (10 points) Show that $\{\mathbf{p}_j\}_{j=1}^n$ forms a basis of \mathbb{R}^n .
 - (b) (10 points) We can expand the solution \mathbf{x}^* to $\mathbf{A}\mathbf{x} = \mathbf{b}$ in this basis, such as

$$\mathbf{x}^* = \sum_{i=1}^n \alpha_i \mathbf{p}_i.$$

Show that $\alpha_i = \frac{\langle \mathbf{p}_i, \mathbf{b} \rangle}{\langle \mathbf{p}_i, \mathbf{p}_i \rangle_{\mathbf{A}}}$.

- (c) (10 points) Let $\{\mathbf{x}_k\}$ denote a sequence of solutions derived by the conjugate gradient method. Let \mathbf{r}_k be the residual at the ith iteration. Then $\mathbf{r}_k = \mathbf{b} \mathbf{A}\mathbf{x}_k$. Show the relation between \mathbf{r}_k and the gradient of a quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} - \mathbf{b}^T\mathbf{x}$.
- (d) (20 points) Let \mathbf{x}_0 be an initial random guess, $\mathbf{r}_0 = \mathbf{A}\mathbf{x}_0 \mathbf{b}$ and $\mathbf{p}_0 = -\mathbf{r}_0$. By the Gram-Schmidt orthonormalization,

$$\mathbf{p}_{k+1} = -\mathbf{r}_k + \sum_{i \leq k} \frac{\langle \mathbf{p}_i, \mathbf{r}_k \rangle_{\mathbf{A}}}{\langle \mathbf{p}_i, \mathbf{p}_i \rangle_{\mathbf{A}}} \mathbf{p}_i.$$

Show all \mathbf{p}_i paiwisely conjugate.

- (e) Let $\{\mathbf{p}_j\}_{j=0}^k$ be conjugate vectors obtained in (d). Show
 - i. (10 points) $\mathbf{W}_k = span\{\mathbf{r}_0, ..., \mathbf{r}_{k-1}\} = span\{\mathbf{p}_0, ..., \mathbf{p}_{k-1}\}$
 - ii. (10 points) $\mathbf{p}_k^T \mathbf{r}_j = -\mathbf{r}_k^T \mathbf{r}_k$ for all $0 \le j < k$

iii. (10 points)
$$\mathbf{p}_k = -\mathbf{r}_k + \beta_{k-1}\mathbf{p}_{k-1}$$
, where $\beta_{k-1} = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{r}_{k-1}^T \mathbf{r}_{k-1}}$.

2. (15 points) Draw a flow chart to illustrate applying the conjugate gradient method for minimizing

$$Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} - \mathbf{b}^T \mathbf{x},$$

where **A** is positive definite.

3. Let

$$f(\mathbf{x};\boldsymbol{\theta}) = \sum_{m=1}^{M} r_m \exp(-\frac{\|\mathbf{x} - \mathbf{a}_m\|^2}{s_m^2}) + r_{M+1}$$

where $\mathbf{x} \in \mathbb{R}^d$ and $\boldsymbol{\theta} = (\mathbf{a}_1^T \ \mathbf{a}_2^T \dots \ \mathbf{a}_M^T \ s_1 \ s_2 \dots \ s_M \ r_1 \dots \ r_M \ r_{M+1})^T$ denotes collection of hyper parameters in f. The length of $\boldsymbol{\theta}$ is dM + 2M + 1.

- (a) (10 points) Let \mathbf{A} be an $M \times d$ matrix, \mathbf{a}_m^T denote the *m*th row of matrix \mathbf{A} , $\mathbf{s} = [s_1, ..., s_M]$, $\mathbf{r} = [r_1, ..., r_M, r_0]$. Write a matlab function to extract \mathbf{A} , \mathbf{s} and \mathbf{r} from given $\boldsymbol{\theta}$.
- (b) (5 points) Write a matlab function to form θ for given A, s and r.
- (c) (5 points) Write a matlab function to evaluate the output of f for given **x** and $\boldsymbol{\theta}$.
- (d) (10 points) Let **X** be an $N \times d$ matrix and **Y** be an $N \times 1$ vector. Write a matlab function to calculate the following mean square error for given X, Y and $\boldsymbol{\theta}$,

$$E(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \boldsymbol{\theta}))^2, \qquad (1)$$

where \mathbf{x}_i^T denotes the *i*th row of \mathbf{X} and y_i denotes the *i*th element of \mathbf{Y} .

- (e) Calculation of the gradient of $E(\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$.
 - i. (15 points) Derive $\frac{df(\mathbf{x};\boldsymbol{\theta})}{d\mathbf{a}_m}, \frac{df(\mathbf{x};\boldsymbol{\theta})}{ds_m}$ and $\frac{df(\mathbf{x};\boldsymbol{\theta})}{dr_m}$ respectively.

- ii. (10 points) Let ga be an $N \times Md$ matrix and ga(i, (m-1)d+1 : md) denote a vector obtained by substituting \mathbf{x}_i and current $\boldsymbol{\theta}$ to $\frac{df(\mathbf{x};\boldsymbol{\theta})}{d\mathbf{a}_m}$. Draw a flow chart to illustrate how to determine matrix ga.
- iii. (10 points) Let gs be an $N \times M$ matrix and gs(i, m) denote a vector obtained by substituting \mathbf{x}_i and current $\boldsymbol{\theta}$ to $\frac{df(\mathbf{x};\boldsymbol{\theta})}{ds_m}$. Draw a flow chart to illustrate how to determine matrix gs.
- iv. (10 points) Let gr be an $N \times (M + 1)$ matrix and gr(i, m) denote a vector obtained by substituting \mathbf{x}_i and current $\boldsymbol{\theta}$ to $\frac{df(\mathbf{x};\boldsymbol{\theta})}{dr_m}$. Draw a flow chart to illustrate how to determine matrix gr.
- v. Let $g\boldsymbol{\theta} = [ga \ gs \ gr]$ be an $N \times L$ matrix, where L = Md + 2M + 1. The *i*th row of $g\boldsymbol{\theta}$ represents the result of substituting \mathbf{x}_i and current $\boldsymbol{\theta}$ to $\frac{df(\mathbf{x};\boldsymbol{\theta})}{d\boldsymbol{\theta}}$. Substituting current $\boldsymbol{\theta}$ to $\frac{dE(\boldsymbol{\theta})}{d\boldsymbol{\theta}}$ is a vector of length L which represents the gradient of $E(\boldsymbol{\theta})$ at current $\boldsymbol{\theta}$.
 - A. (10 points) State how to determine the gradient of $E(\boldsymbol{\theta})$ at current $\boldsymbol{\theta}$ for given $g\boldsymbol{\theta}$.
 - B. (10 points) Write a matlab function for determining $\frac{dE(\theta)}{d\theta}$ at current θ .
- 4. $\{\boldsymbol{\theta}_k\}_k$ denotes a sequence of $\boldsymbol{\theta}$ obtained by an iterative approach for minimizing $E(\boldsymbol{\theta})$ in equation (1) with respect to $\boldsymbol{\theta}$. Typically it is represented by

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \Delta \boldsymbol{\theta}_k.$$

The gradient method sets $\Delta \theta_k$ proportional to the negative gradient $E(\theta)$ with respect

to $\boldsymbol{\theta}$ at $\boldsymbol{\theta} = \boldsymbol{\theta}_k$, mathematically expressed by

$$\Delta \boldsymbol{\theta}_k \propto -\nabla(\boldsymbol{\theta}_k),$$

where

$$abla(oldsymbol{ heta}_k) = rac{dE(oldsymbol{ heta})}{doldsymbol{ heta}}|_{oldsymbol{ heta}=oldsymbol{ heta}_k}.$$

- 5. (10 points) Draw a flow chart to illustrate applying the gradient method for minimizing $E(\theta)$ in equation (1) with respect to θ .
- 6. (10 points) The gradient method can be improved by the technique of line minimization. The step size η is optimized such that

$$\eta_{otp} = \min_{\{\eta\}} E(\boldsymbol{\theta}_k - \eta \nabla(\boldsymbol{\theta}_k)).$$

- (a) (10 points) Write a matlab function to evaluate $E(\boldsymbol{\theta}_k \eta \nabla(\boldsymbol{\theta}_k))$ for given $\boldsymbol{\theta}_k, \eta$ and $\nabla(\boldsymbol{\theta}_k)$.
- (b) (10 points) Let $E(\eta)$ the output of function E for fixed θ_k and $\nabla(\theta_k)$. The matlab function mnbrek.m is a function that is able to adjust given a, b and c to form a bracket that satisfies the following condition

$$a < b < c,$$

 $E(b) < E(a) \text{ and } E(b) < E(c).$

Draw a flow chart to illustrate how to adjust given a, b and c to form a bracket.

- (c) Golden section search for given bracket a, b and c.
 - i. (10 points) Let a < b < c. The golden search sets x to b + W * (c b) if |b - c| > |b - a| and b - W * (b - a). State two criteria for deriving $W = \frac{3-\sqrt{5}}{2}$.

- ii. (10 points) Draw a flow chart to illustrate golden section search of minimizing $E(\eta)$ for given a, b and c.
- (d) Parabolic interpolation for given bracket a, b and c:
 - i. (10 points) Express a quadratic polynomial that interpolates (a, E(a)), (b, E(b))and (c, E(c)) and find x_{opt} that minimizes $E(\eta)$, where η is within the given bracket.
 - ii. (10 points) Draw a flow chart to illustrate minimizing $E(\eta)$ by iteratively finding the minimum of quadratic interpolating polynomials.
- 7. The nonlinear conjugate gradient method combines the conjugate gradient method with the line minimization method.
 - (a) (10 points) Draw a flow chart to illustrate minimizing $E(\boldsymbol{\theta})$ by the nonlinear conjugate gradient method.
 - (b) (100 points) Write matlab programs to implement the nonlinear conjugate gradient method for minimizing $E(\boldsymbol{\theta})$.
- 8. (30 points) Let $\mathbf{z} = \{z[t]\}_t$ and $\mathbf{x} = \{x[t]\}_t$. Series \mathbf{x} is regadred as linear convolution of series z through a kernel $\mathbf{a} = (a_0, ..., a_{L-1})$, if

$$x[t] = \sum_{i=0}^{L-1} a_i z[t-i] + n_t \text{ for } L \le t \le N,$$

where $\{n_t\}_t$ denotes noises.

(a) (10 points) Design an objective function $E(\mathbf{a})$ whose minimization with respect to \mathbf{a} leads to an optimal \mathbf{a} for given \mathbf{z} and \mathbf{x} . (b) (10 points) Derive \mathbf{a}_{opt} such that

$$\mathbf{a}_{opt} = \min_{\{\mathbf{a}\}} E(\mathbf{a}).$$

(c) (10 points) Write a matlab function to calculate \mathbf{a}_{opt} for given \mathbf{x} and \mathbf{z} .