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Nonlinear Conjugate Gradient

=10 ,k=0,r=—f’(x),p=r,6new=rTr, 60=5new
While i < ipygy and Spey > €28, do
j =
Sp=p'p
Do
-r'@1"p
pTr" (x)p
X=x+ap

j=j+1
while j < jmayx and a®8, > &*
r=—f"(x)
Ootd = Onew
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B=(§new
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Algorithm RBF-Net(K, A, O)
Input:

Sequence of labeled training patterns Z = ((x1,%1)," ", (X1, ¥1))
Number of RBF centers K

Regularization constant A

Number of iterations O

Initialize:

Run K-means clustering to find initial values for u; and determine
o,k = 1,..., K, as the distance between pu; and the closest u;

(1 # k).
Do foro=1:0,

1.

2a.

2b.

3a.

3b.

- : —(QT AT L T
Compute optimal output weights w = (G G + 2TI) G'y
Compute gradients %E and %E as in (28) and (27) with
optimal w and form a gradient vector v

Estimate the conjugate direction Vv with Fletcher-Reeves-Polak-
Ribiere CG-Method (Press et al., 1992)

Perform a line search to find the minimizing step size 4 in direction
Vv; in each evaluation of E£ recompute the optimal output weights
w as in line 1

Update py and o with ¥ and ¢

Output: Optimized RBF net
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Figure 10.0.1.  Extrema of a function in an interval. Points A, C, and F are local, but not global

~ maxima. Points B and F’ are local, but not global minima. The global maximum occurs at &, which
~ 1s on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is at D. At point E, derivatives higher than the first vanish, a situation which can

- cause difficulty for some algorithms. The points X, Y, and Z are said to “bracket” the minimum F’,
since Y 1is less than both X and Z.




Figure 10.1.1.  Successive bracketing of a minimum. The minimum is originally bracketed by points
1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which
replaces 4. The rule at each stage is to keep a center point that is lower than the two outside points. After
the steps shown, the minimum is bracketed by points 5,3,6.
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Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.
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