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Independent Component Analysis Using Potts Models
Jiann-Ming Wu and Shih-Jang Chiu

Abstract—In this work, we explore the extending application
of Potts encoding to the task of independent component analysis,
which primarily deals with the problem of minimizing the Kull-
back–Leibler (KL) divergence between the joint distribution and
the product of all marginal distributions of output components.
The competitive mechanism of Potts neurons is used to encode the
overlapping projections from observations to output components.
Based on these projections, the marginal distributions and the en-
tropy of output components are made tractable for computation
and the adaptation of the demixing matrix toward independent
output components is obtained. The Potts model for ICA is well
formulated by an objective function subject to a set of constraints,
which leads to a novel energy function. A hybrid of the mean field
annealing and the gradient descent method is applied to the en-
ergy function so that a set of dynamics and mean field equations
can be obtained for the evolution of the continuous geometrical and
discrete combinatorial neural variables. Our approach to indepen-
dent component analysis presents a new criterion for ICA which is
distinct from the cumulative-expansion based criterion of Comon
and the edgeworth-expansion-based entropy estimation of Amari.
The performance of the Potts model for ICA given by our numer-
ical simulations is encouraging.

Index Terms—Entropy, independent component analysis (ICA),
mean field annealing, Potts model, unsupervised learning.

I. INTRODUCTION

I NDEPENDENT component analysis (ICA) has received
much attention from the field of neural computation due to

its potential application to the process of array signals, such
as speech [19], natural images [5], [13], [14], event related
potential [23] and functional MRI [24]. ICA algorithms have
been considered to be information-theory-based unsupervised
learning rules [1]–[4], [6], [17], [20], [21], [26]. Given a set of
multidimensional observations, which are assumed to be linear
mixtures of unknown independent sources through an unknown
mixing structure, an ICA algorithm performs a search for the
demixing matrix by which the observations can be linearly
translated to form independent output components. This process
has been termed blind source separation [10], [11].

Encoding of criteria for the independence of output compo-
nents affects the derivation of an ICA algorithm. A set of output
components or random variables are independent if their joint
distribution coincides with the product of all individual mar-
ginal distributions. The independence of output components can
be quantitatively measured by the Kullback–Leibler (KL) diver-
gence [1], [10] which is an expected value of the log ratio of the
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joint distribution to the product of all individual marginal dis-
tributions. To facilitate computational tractability for the mini-
mization of the KL divergence, the individual marginal distribu-
tions of output components are estimated from observations in
an ultra-precise form by which the demixing matrix can be opti-
mized. Existing methods for the estimation primarily include the
cumulative-expansion-based approach [10], the edgeworth-ex-
pansion-based estimation [31] and the truncated Gram–Charlier
expansion based estimation [32]. Using the competitive mech-
anism of Potts neural variables [25], this work presents a novel
encoding for the marginal distributions of output components
and explores the resulting KL divergence and the ICA algo-
rithm.

The Potts encoding possesses flexibility for effective internal
representations and reliable capability in collective decisions.
These properties are essential for designing neural networks
suitable for fundamental complex tasks, such as combinatorial
optimizations [25], self-organization [22], [29], [30], classifica-
tion and regression [27]. The employment of multistate Potts
neurons, generalized from two-state spin neurons, can signifi-
cantly reduce the search complexity for feasible configurations,
thereby facilitating modeling of the problem. To avoid the trap
of tremendous local minima in a circumspect energy function,
the evolution of the mean configuration of Potts neurons is con-
trolled by an annealing process an analogous to physical an-
nealing, which is a process of gradually and carefully scaling the
temperature from a sufficiently large value to a small one. When
this process is used, the probability of a Potts neuron in an in-
dividual state, denoted by one mean activation of a Potts neural
variable, is increasingly influenced by the injected mean field
which measures the weighted sum of the mean activations pro-
vided by the other neural variables through interconnections. At
the beginning, mean activations are independent of the injected
mean fields and the system acts following the principle of max-
imal entropy. Under these circumstances, a Potts neuron has the
same probability for each individual state. As the process pro-
gresses, the system always arrives at a stationary configuration
which is a tradeoff between the principle of maximum entropy
and that of minimal mean energy. Toward the end of the process,
the determination of the mean activations is thoroughly domi-
nated by the force of minimal mean energy. That is essentially
equivalent to the winner-take-all principle. The Potts encoding
has been shown to be suitable for modeling collective decisions
in parallel and distributed computations [22], [25]. Its applica-
bility to the task of independent component analysis is explored
in this work.

The ICA algorithm developed in this work iteratively invokes
the estimation of the individual marginal distributions of output
components and the adaptation of the demixing matrix for the
minimization of the KL divergence. The key to the coordina-
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tion of the two subtasks depends on the method used to map
observations to output components. Due to uncertainty during
the intermediate process, the mapping cannot be straightforward
but must go through modulation from overlapping projection
to nonoverlapping projection. The Potts encoding and the an-
nealing process plays central role in fine-tuning the mapping
during modulation. Assuming that the response of each output
component is within a set of finite disjointed states or bins, the
nonoverlapping projection maps an observation to one and only
one state of every output component, while, in contrast, the over-
lapping projection activates all states to each observation, with
each state having its own projected probability attached. This
being the case, the nonoverlapping projection is a special case
of the overlapping projection in which the projected probability
of the only active state is one and the others are zero. The pro-
jected probabilities of every output component to an observa-
tion are related to the mean activations of a Potts neuron. The
competitive mechanism of Potts neurons then takes over the nat-
ural modulation of the mapping from overlapping projection to
nonoverlapping projection. The projected probabilities compen-
sate for the uncertainty of the demixing matrix and the mar-
ginal distributions during intermediate process. By tracing all
observations, we can sketch a normalized histogram for the es-
timation of the marginal distribution of each output component.
Based on this, the intermediate demixing matrix can be opti-
mized, since the KL divergence is already tractable. The whole
idea is realized by the minimization of an objective function sub-
ject to a set of constraints. The key is the encoding of the pro-
jected probabilities and the demixing matrix respectively into
discrete Potts neural variables and continuous receptive fields
of mixed linear and integer programming. Related dynamics are
further obtained by applying the mean field annealing and the
gradient descent method to an energy function which is derived
from the mathematical framework. The two sets of dynamics
interactively evolve throughout the annealing process toward
the global or near global minimum of the energy function. The
novel Potts model minimizes the KL divergence and reduces re-
dundancy among raw signals without any assumption about the
form of prior distributions of independent sources.

In the next section, we state the ICA problem and our assump-
tions, and we introduce our new algorithm for ICA. In the final
section, we examine the simulation results and discuss our new
algorithm.

II. POTTS MODELS FORICA

A. The Problem

Assume that the unknown mutually independent sources
are of zero mean and are denoted by a random vector

; that the observations are samples from the linear
transformation of these independent sources via an unknown
mixing matrix, such as

(1)

where is an scalar matrix and . In-
dependent component analysis aims to recover original sources
through a set of output components of which the joint distri-

bution is as close as possible to the product of their marginal
distributions

(2)

where denotes the marginal distribution of theth recov-
ered source or output component. The estimation of inde-
pendent sources is the linear transformation of the observations
via a demixing matrix as follows:

(3)

When is identical to the inverse of (i.e., ) or
the product is an identity matrix, the estimationrecovers
sources exactly. However, since the condition of independence
(2) does not limit the source signals to be recovered to an exact
order or scale, a valid demixing matrix can have a form of

(4)

where is a permutation matrix and is a nonsingular diagonal
matrix for arbitrary scaling.

B. The Kullback–Leibler Divergence

The dependency among output componentsis quantita-
tively measured by the KL divergence which is the expected
value of the log ratio of the joint distribution to the product of
the marginal distributions. The KL divergence is defined by

(5)

The minimization of the KL divergence has produced many
well-known ICA algorithms, including information maximiza-
tion [4], negentropy maximization [1], and higher order mo-
ments and cumulants [9]. The KL divergence can be separated
into two terms

(6)

where

denotes the joint entropy and

(7)

denotes the marginal entropy. Since , we have
and then

(8)

Since it is independent of the demixing matrix, the first term is
negligible. The tractability of the last term for optimizing the
KL divergence in (8) is resolved by the Potts encoding in the
next section.
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C. Potts Modeling

To approximate the marginal distribution of an output com-
ponent by a normalized histogram, we first quantize the range
of into a set of discrete states or bins by a symmetrical par-
tition , where is equal to
and coincides with for all . The
parameters and , respectively, control the number of states
and the length of the middle intervals. The states are
numbered from one to . Using the method of nonoverlap-
ping projection, when given a sample , with

as the th row of , the th output component responds
a state numbered . It follows

. The normalized his-
togram for the occurrences of the states ofcan be estimated
by tracing all samples. But this form of the marginal distribution
is not differentiable with respect to and does not compensate
for uncertainty, so in order to achieve a tractable KL divergence,
we consider the overlapping projection.

Let the unitary vector denote the
membership vector for indicating the response state of theth
output component when theth sample is given, where

for , and . The only
active bit within , for example, the th bit, indicates that the
th sample is mapped to the th state of theth

output component. Consider the following objective function:

(9)

subject to

for all (10)

for all

If the only active bit in every membership vectorhas an index
identical to , is minimized. The min-
imizer is a map of the nonoverlapping projection. For a
fixed , the quantity , denoted by ,
is a constant. The objective function with constraints (10) ex-
actly describes an interactive neural system, as every member-
ship vector is associated with a Potts neuron. In an analogy
with statistical mechanism under thermal equilibrium, the mean
field theory states that the probability of being active, or the
expected value of is proportional to the following Boltz-
mann distribution

(11)

where denotes the inverse of an artificial temperature and
is the local mean field. According to the unitary constraint in
(10), the probability has the following normalized
form:

(12)

Let be the projected probability of the response
of the th state to the sample . The overlapping projec-
tion stochastically activates each state of an output component
to a sample according to its own projection probability. Then a
discrete form of the individual marginal distribution can be ap-
proximated by a normalized histogram of the state occurrence
of an output component , which sums the normalized projec-
tion probabilities of all samples

(13)

Furthermore, the marginal entropy can be estimated by follows:

(14)

The parameter in (12) is gradually scaled by the annealing
process from a sufficiently low value to a large one. At the be-
ginning of the process, the probability is not af-
fected by the local mean field and approaches .
is then assigned to each state with an almost equal projection
probability. As the process progresses, the local mean field in-
creasingly contributes to the mean activation. At an extremely
large , the rule of (12) obeys the principle of winner-take-all,
and the system behaves in conformity with nonoverlapping pro-
jection. The parameter clearly modulates the degree of over-
lapping projection. With Potts encoding, the adaptation of
toward the minimum value of marginal entropy in (14)
can be directly realized by the gradient descent method.

The new ICA algorithm iteratively executes the adaptation of
an intermediate mixing matrix and the estimation of all marginal
entropies as the annealing process is carried out. Returning to
the KL divergence in (8) one can derive the overall algorithm.
By neglecting the first term, replacing the last term with the dis-
crete marginal entropy in (14) and inserting the objective func-
tion with corresponding constraints, we model the task of
the ICA as a mathematical program which minimizes

(15)

subject to

(16)

for all (17)

(18)

where and are weighting constants. The task of ICA now
turns to find and which satisfy the constraints and min-
imize the objective . The mathematical framework consists
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of a mixed linear and integer program. The variables are
discrete nonordered Potts neural variables for the combinatorial
projection, and the demixing matrix represents continuous
geometrical features. To develop our algorithm, we apply a hy-
brid of the mean field annealing and the gradient descent method
to optimize these two kinds of variables.

When we treat all membership vectors as Potts neural
variables, the first two constraints (16) and (17) are naturally
taken over by the property of the Potts neural activation function
as in (12). By further substituting the constraints (18) into all
in the objective (15) and following the optimization procedure
through mean field annealing, we can rewrite the programming
(15)–(18) as minimizing the following energy function:

(19)

where denotes the collection of all . By fixing , at each
temperature, the mean field annealing seeks the mean configu-
ration under thermal equilibrium, where the probability of
the system configuration is proportional to the following Boltz-
mann distribution

(20)

where with only one argument denotes that the other argu-
ment has been considered constant. At a sufficiently large
value, the Boltzmann distribution leads to an optimal configu-
ration

where

To approximate the optimal configuration, the mean field
annealing tracks the mean configuration along the annealing
process, which gradually increases theparameter from a
sufficiently low value to a large one. At eachvalue, the mean
field equations iteratively run to reach a fixed point which
approximates the mean configuration. The mean configuration
obtained at each value is consequently used as an initial
mean configuration for evolution to the subsequentvalue.
The mean field equations can be derived from the following
free energy function which have been proposed by Peterson
and Söderberg [25]

(21)

where denotes the mean of , denotes a collection of all
, is an auxiliary vector, and denotes the transposition

of . The stationary point of the free energy function embodies
the following mean field equations:

(22)

(23)

of which the detailed form is

(24)

(25)

where the constant terms in (24) have been neglected.
During the stage in which the mean configuration of Potts

neural variables at eachvalue is evaluated, the demixing ma-
trix is considered constant. Then the mean configuration
feeds back to the adaptation of the demixing matrix. By applying
the gradient descent method to the free energy, we have the fol-
lowing updating rule for each element in the matrix :

(26)

(27)

The mean field equations (24) and (25) and the updating rule
(27) constitute the following ICA algorithm.

1. Initialize as a sufficiently low
value, as an identity matrix and
every as a value near .
2. Update every and by (24) and
(25) iteratively to a stationary point.
3. Update by (27).
4. If the value is less than a
halting threshold, increase the value
by an annealing schedule and then go to
step 2; otherwise halt.

The convergence of the algorithm is shown in the Appendix.
The above approach is an energy-function-oriented neural

network, which is composed of two sets of interactive dynamics,
(24), (25), and (27), for the evolution of Potts neural activations
and the demixing matrix, respectively. The two sets of inter-
active dynamics are iteratively executed toward the minimum
of the energy function (19) along the annealing process. The
energy function is essentially equivalent to the KL divergence,
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Fig. 1. The five source signals in the first test.

which has been encoded with the criteria for independent output
components without any assumption about the prior distribu-
tions of the unknown sources.

All means obtained at step 2 denote the result of over-
lapping projections of all observations into output components
via current . Comparison of the local mean field in (24)
with in (12). depends on all means , ,
but is constant. is influenced by the projection feature
as well as the term oriented by the minimization of the marginal
entropy . The minimization of the KL divergence in (8)
has been decomposed into the maximization of the joint entropy

and the minimization of all marginal entropies . The
update rule in (27) is responsible for the maximizationof the joint
entropy. The two subtasks at steps 2 and 3 are joined by the first
term of the energy function in (19), which allows the first term
in(24)andthesecondtermin(27) toproducereliableprojections.
The competitive mechanism in (25) and the annealing process at
step 4 subsequently modulate the degree of overlapping projec-
tions in an attempt to minimize the energy function.

III. N UMERICAL SIMULATIONS AND CONCLUSION

In the following simulations, we use the performance mea-
sure proposed by Amariet al. [1].

(28)

where denotes the joint element of theth row and the th
column of the product of the mixing matrix and the demixing
matrix. We explore the performance and stability of the new al-
gorithm by comparison with the fast fixed point algorithm (Fas-
tICA) [16], [15] and the JadeICA approach [6], [7].

The following sources have been used by Amariet al. in
[1], sign ,

, , , where the first four compo-
nents of are modulating the data signals and is a noise
uniformly distributed in . Assume that the five sources
are unknown to the algorithms and are mixed by a mixing ma-
trix ,of which the diagonal entries are randomly generated by

and the off-diagonal entries are generated by
, where is of a uniform distribution in .

The source signals are shown in Fig. 1 and their normalized his-
tograms are shown in Fig. 2. The mixed signals are sampled at
a sampling rate of 10K Hz. We feed the first 200 samples of the
mixed signals in Fig. 3 to the three algorithms. In the simulation
of the PottsICA, the parameter setting includes the learning rate

in (27), and the weights in (19). For
the annealing process, the artificial temperature or the inverse of
the parameter has an initial value and a decreasing factor

. The second step in the procedure is executed no more than
20 times and the third step is executed ten times. The halting
condition in the last step is , for this case

and . The input to the log function in (24)
is automatically added by a constant to avoid vanishing
to zero. The partition parameter is and

. The PottsICA was coded in MATLAB and executed in
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Fig. 2. The normalized histograms of the five sources in Fig. 1.

Fig. 3. The mixed signals of the source signals in Fig. 1 by a randomly generated mixing matrix.

Pentium III. The MATLAB codes for the FastICA and JadeICA
were downloaded from the homepages provided by the authors

of [15], [16] and [6], [7]. Fig. 4 shows the signals separated by
the PottsICA. The same experiment was repeated ten times. For
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Fig. 4. The recovered signals by the PottsICA from the mixed signals in Fig. 3.

each repetition the mixing matrix and the source signal were re-
newed. The mean of the performance measure in (28) over the
ten experiments for each of the three algorithms is listed in first
row of Table I.

The second test adds a Gaussian noise with mean zero and
variance 0.25 to the sources in the last test as the sixth source,
and the resulting performance of the three algorithms is listed
in the second row of Table I. The third row of the same table
lists the result for another test with eight sources, for which the
two additional sources are in a sub-Gaussian distribution and
a super-Gaussian distribution, respectively. The sub-Gaussian
is of the distribution , where

is the normal density with mean and
variance . The super-Gaussian source is generated
by , where a random variable is in
a Gaussian density with mean zero and variance 0.25. The
normalized histograms of the eight sources are shown in Fig. 5.
For all three tests, the PottsICA is better than the other two
algorithms in performance, but the other two algorithms are
superior to the PottsICA in speed. The last column of Table I
lists the average CPU-time of the PottsICA. This result was
achieved using a sequential machine, but PottsICA may be
executed in a parallel machine or a delicate machine to improve
computational speed.

The following test explores the dependence of the perfor-
mance on problem size. The source number is increased one by
one from to . Table II lists the result of sepa-
rating uniform distributions by the three algorithms. Every uni-
form distribution is in interval . The result of a sim-

TABLE I
THE PERFORMANCE OF THETHREE ALGORITHMS FOR THETESTS

ilar test is listed in Table III, in which the sources include one
Gaussian source with mean and variance
and uniform sources in interval . For cases in
which problem size is larger than 15, the FastICA failed to re-
cover all sources due to divergence of some components and the
corresponding performance is replaced by a mark “.” The per-
formance in Tables II and III shows that the PottsICA is better
than the other two algorithms. This superiority becomes more
significant as the problem size becomes large.

The extension of the Potts encoding to the task of ICA has
been demonstrated in this work. We have employed mean acti-
vations of Potts neural variables to realize overlapping projec-
tions from observations to output components. The interactions
between the estimation of the individual marginal entropy for a
tractable KL divergence and the adaptation of the intermediate
demixing matrix is well developed by the optimization structure
of mean field annealing. For independent component analysis,
we have derived a novel energy function, to which a hybrid of
the mean field annealing and the gradient descent method has
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Fig. 5. The normalized histograms of eight sources for the third test in Table I.

been applied. The two sets of interactive dynamics, (24), (25),
and (27), are shown to be effective for ICA by our numerical
simulations. In comparison with the JadeICA and the FastICA,
the new algorithm does a better job of handling the sources
whether uniform, sub-Gaussian or super-Gaussian in distribu-
tion, and the new algorithm is still reliable for cases involving a
larger number of sources. For all of our tests, the new algorithm
uses the same set of parameters. Since there is no prior assump-
tion concerning the distributions of the sources in the derivation,
there is no need to use different objectives for different distri-
butions of sources. The result of our numerical simulations are
encouraging.

Like the other complex tasks, such as constrained opti-
mizations [25], and unsupervised learning [12], [22], the
ICA problem is solved by an energy-function-oriented neural
network. It is notable that the two sets of interactive dynamics,
(24), (25), and (27), are similar to those of the elastic net for
the task of self-organization [12], [22]. The key is the Potts
encoding, by which the KL divergence for the ICA is connected
to the proposed energy function in this work. The usage of Potts
neural variables for resolving the individual marginal entropy
directly addresses the core issue involved in reducing the KL
divergence for the ICA. The new algorithm possesses the
following two computational advantages of the energy function
oriented neural networks as in [25], [22]. First, the solution

obtained by the collective decision of the PottsICA is reliable
in quality, which has been shown by our numerical simulations.
Second, the PottsICA is suitable for a parallel and distributed
process and can be significantly speeded up by a parallel
machine or a delicate hardware. The PottsICA has potential for
real applications. In addition, we are interested in extending
the current work to include overcomplete representations and
nonlinear ICA in future work.

APPENDIX

That steps 2 and 3 in the ICA algorithm converge can be
proved by follows. Rewrite the mean field equations in the con-
text as the following continuous form:

(29)

(30)

(31)
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TABLE II
TEST PERFORMANCE OF THETHREE ALGORITHMS FORDIFFERENTPROBLEM

SIZES WITH ALL SOURCES INUNIFORM DISTRIBUTIONS

where vector is a standard unit vector of which theth el-
ement is one. Then rewrite the updating rule as the following
dynamics:

Then the convergence of the free energyalong the trace of
two sets of dynamics can be shown

(32)

TABLE III
TESTPERFORMANCE OF THETHREE ALGORITHMS FORDIFFERENTPROBLEM

SIZES WITH ONE GAUSSIAN SOURCE ANDN � 1 UNIFORM SOURCES

where is the Hessian of

runs over . Since is positive definite

is shown.
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