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Independent Component Analysis Using Potts Models

Jiann-Ming Wu and Shih-Jang Chiu

Abstract—in this work, we explore the extending application joint distribution to the product of all individual marginal dis-
of Potts encoding to the task of independent component analysis, tributions. To facilitate computational tractability for the mini-
which primarily deals with the problem of minimizing the Kull- = iz ation of the KL divergence, the individual marginal distribu-

back—Leibler (KL) divergence between the joint distribution and fi f output t timated f b i .
the product of all marginal distributions of output components. 1ons of output components areé estimated from observations in

The competitive mechanism of Potts neurons is used to encode the@n ultra-precise form by which the demixing matrix can be opti-
overlapping projections from observations to output components. mized. Existing methods for the estimation primarily include the
Based on these projections, the marginal distributions and the en- cumulative-expansion-based approach [10], the edgeworth-ex-
tropy of output components are made tractable for computation 4 46i0n-hased estimation [31] and the truncated Gram—Charlier
and the adaptation of the demixing matrix toward independent . . . . o

output components is obtained. The Potts model for ICA is well exPa”S'O” based estlmat_lon [32]. USIHg the competitive mech-
formulated by an objective function subject to a set of constraints, @nism of Potts neural variables [25], this work presents a novel
which leads to a novel energy function. A hybrid of the mean field encoding for the marginal distributions of output components

annealing and the gradient descent method is applied to the en- and explores the resulting KL divergence and the ICA algo-
ergy function so that a set of dynamics and mean field equations rithm.

can be obtained for the evolution of the continuous geometrical and The Pott di flexibility for effective int |
discrete combinatorial neural variables. Our approach to indepen- € FOlLs encoding possesses Tiexibility Tor efiective interna

dent component analysis presents a new criterion for ICA which is '€presentations and reliable capability in collective decisions.
distinct from the cumulative-expansion based criterion of Comon These properties are essential for designing neural networks
and the edgeworth-expansion-based entropy estimation of Amari. suitable for fundamental complex tasks, such as combinatorial
The performance of the Potts model for ICA given by our numer- o yimizations [25], self-organization [22], [29], [30], classifica-
ical simulations is encouraging. . ; .
tion and regression [27]. The employment of multistate Potts
Index Terms—Entropy, independent component analysis (ICA), neurons, generalized from two-state spin neurons, can signifi-

mean field annealing, Potts model, unsupervised learning. cantly reduce the search complexity for feasible configurations,
thereby facilitating modeling of the problem. To avoid the trap
l. INTRODUCTION of tremendous local minima in a circumspect energy function,

. . the evolution of the mean configuration of Potts neurons is con-
NDEPENDE.NT compon(_ent analysis (ICA) ha; recelved]oned by an annealing process an analogous to physical an-
much attention from the field of neural computation due ta

. . o . aling, which is a process of gradually and carefully scaling the
its potential application to the process of array signals, SUg perature from a sufficiently large value to a small one. When
as speech [19], natural images [5], [13], [14], event relatq

. . ; is process is used, the probability of a Potts neuron in an in-
potential [2.3] and functllonal MR.I [24]. ICA algorithms haV(,ediv'dual state, denoted by one mean activation of a Potts neural
been considered to be information-theory-based unsupervi di

. ) able, is increasingly influenced by the injected mean field
Iearr_nr;g rule_s [11-14], [6], [.17]’ [20].’ [21], [26]. Given a set .Ofwhich measures the weighted sum of the mean activations pro-
multidimensional observations, which are assumed to be lin

ot £ unk ind dent h h « Sitied by the other neural variables through interconnections. At
Mixtures ot unknown Independent SoUrces through an unknoy, beginning, mean activations are independent of the injected

mixing structure, an ICA algorithm performs a search for thl%ean fields and the system acts following the principle of max-

demixing matrix by which the observations can be Imearlp(nal entropy. Under these circumstances, a Potts neuron has the

Lranzlatedtto forrg ;)r;dzpendentoutputtgomp)l%neritic,. This ProC&She probability for each individual state. As the process pro-
as been termed blind source separation [10], [11]. resses, the system always arrives at a stationary configuration

distribution coincides with the product of all individual mar oted by the force of minimal mean energy. That is essentially

ginal distributions. The independence of output components “livalent to the winner-take-all principle. The Potts encoding

be quantitatively measured by the Kullback-Leibler (KL) d'verﬁas been shown to be suitable for modeling collective decisions

gence [1], [10] which is an expected value of the log ratio of tﬁﬁ parallel and distributed computations [22], [25]. Its applica-

. . . hility to the task of independent component analysis is explored
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tion of the two subtasks depends on the method used to niayion is as close as possible to the product of their marginal
observations to output components. Due to uncertainty duridgstributions

the intermediate process, the mapping cannot be straightforward M

but must go through r.nod.ulation from overlapping projection p(y) = Hpi(yi) )

to nonoverlapping projection. The Potts encoding and the an- baley

nealing process plays central role in fine-tuning the mappin ) o

during modulation. Assuming that the response of each outp¥terepi(v:) denotes the marginal distribution of tfté recov-
component is within a set of finite disjointed states or bins, ttf§€d source or output compongnt The estimatiory of inde-
nonoverlapping projection maps an observation to one and oﬁg,ndent sources is t_he linear transformation of the observations
one state of every output component, while, in contrast, the ov¥i@ @ demixing matrix¥" as follows:

lapping projecti'on qctivates aII. states to each'observation, Wi'Fh y = Wx = WAs. 3)

each state having its own projected probability attached. This

being the case, the nonoverlapping projection is a special cigeen'W is identical to the inverse oA (i.e., W = A1) or

of the overlapping projection in which the projected probabilitthe productWA is an identity matrix, the estimatignrecovers

of the only active state is one and the others are zero. The psources exactly. However, since the condition of independence
jected probabilities of every output component to an observ@) does not limit the source signals to be recovered to an exact
tion are related to the mean activations of a Potts neuron. Téreler or scale, a valid demixing matrix can have a form of
competitive mechanism of Potts neurons then takes over the nat- =)
ural modulation of the mapping from overlapping projection to W=APA (4)
nonoverlapping projection. The projected probabilities compefinerep is a permutation matrix andl is a nonsingular diagonal
sate for the uncertainty of the demixing matrix and the Magatrix for arbitrary scaling.

ginal distributions during intermediate process. By tracing all

observations, we can sketch a normalized histogram for the Bs-The Kullback—Leibler Divergence

timation of the marginal distribution of each output component.

i?zseg Oi':] th'fr’] th}g_'g?srr:]e?:atei delrplxgng t;natt”gl ca1r_1hbewc;]p{Pely measured by the KL divergence which is the expected
€d, since the ergence 1S already tractable. 1N€ WNQJgy, o of the log ratio of the joint distribution to the product of

ideais realized by the minimization of an objective function sulb : S : i .
ject to a set of constraints. The key is the encoding of the p?g-e marginal distributions. The KL divergence is defined by
)

jected probabilities and the demixing matrix respectively into D(y) = /p(y) log p
discrete Potts neural variables and continuous receptive fields N

of mixed linear and integer programming. Related dynamics are pr, (v:)
further obtained by applying the mean field annealing and the i=1

gradient descent method to an energy function which is derivegle minimization of the KL divergence has produced many
from the mathematical framework. The two sets of dynamigge|l-known ICA algorithms, including information maximiza-
interactively evolve throughout the annealing process towaign [4], negentropy maximization [1], and higher order mo-

the global or near global minimum of the energy function. Th@ents and cumulants [9]. The KL divergence can be separated
novel Potts model minimizes the KL divergence and reduces igto two terms

dundancy among raw signals without any assumption about the N
form of prior distributions of independent sources. Div) = —H
) =- + > Hi(yi 6
In the next section, we state the ICA problem and our assump- ®) 2 ; ilw) ©
tions, and we introduce our new algorithm for ICA. In the final
section, we examine the simulation results and discuss our n&RF"€

The dependency among output components quantita-

dy. (5)

algorithm. H(y)=— /p(Y) log p(y)dy
ll. POTTS MODELS FORICA denotes the joint entropy and
A. The Problem H 1 d 7
Assume that thé/ unknown mutually independent sources ) == /pi(yi) o pilu o

are of zero mean and are de_noted by a random veict@{ denotes the marginal entropy. Since= Wx, we haveH (y) =
[s1, ..., sp]; that the observations are samples from the Ilne%frgx) + log |det (W)| and then

transformation of these independent sources via an unknow
mixing matrix, such as N
D(y) = —H(x) — log |det (W)| + Y Hi(yi). (8)
z=As Q) =1
Since it is independent of the demixing matrix, the first term is
whereAis anN x M scalar matrix and = [z1, ..., zn]'. In- negligible. The tractability of the last term for optimizing the
dependent component analysis aims to recover original sourésdivergence in (8) is resolved by the Potts encoding in the
through a set of output components of which the joint distrirext section.
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C. Potts Modeling Let Pr (6;:x = 1) be the projected probability of the response

To approximate the marginal distribution of an output conf§ the #th state to the samplg;(#). The overlapping projec-

ponenty; by a normalized histogram, we first quantize the rangiP" Stochastically activates each state of an output component
of y into a set of discrete states or bins by a symmetrical paf.2 sample according to its own projection probability. Then a
tition {hi1 < hiz < < hix }, whereh;, is equal to—hy discrete form of the individual marginal distribution can be ap-

T (2 e T 1 T (3

and ;. — hi._, coincides withd for all 2 < k < K. The proximated by a normalized histogram of the state occurrence
ik ik— = = '

parametersy andd, respectively, control the number of state§f @n output componenj;, which sums the normalized projec-
and the length of the middI& — 1 intervals. The states are!iOn Probabilities of all samples

numbered from one td{. Using the method of nonoverlap- 1 I

ping projection, when given a sample(t) = W;x(¢), with Pik = Z Pr (bi =1). (13)

‘W, as theith row of W, theith output component responds t=1

a state numbered” = argminy, [[yi(t) ~ hix||*. 1t follows  Furthermore, the marginal entropy can be estimated by follows:

i (®) = har||* = ming ||y (t) — hax||*. The normalized his-
togram for the occurrences of the stateg;otan be estimated Hi(y) =— / pi(v:) log pi(v:)dy;
by tracing all samples. But this form of the marginal distribution
is not differentiable with respect & ; and does not compensate -
for uncertainty, so in order to achieve a tractable KL divergence, - Z pir log pix. (14)
we consider the overlapping projection. k=1
Let the unitary vectod;;, = [8i1, ..., dix] denote the The /3 parameter in (12) is gradually scaled by the annealing

membership vector for indicating the response state oftthe process from a sufficiently low value to a large one. At the be-
output component when th¢h sample is given, wher&,,, € ginning of the process, the probabilit (6;: = 1) is not af-
{0,1}for1 < i< N,1<t<Tandl < k< K. Theonly fected by the local mean fielf;;; and approachel/ K. v;(¢)
active bit withind,,, for example, thevth bit, indicates that the is then assigned to each state with an almost equal projection
tth sampley; (t) = W;x(t) is mapped to theth state of théth  probability. As the process progresses, the local mean field in-
output component. Consider the following objective function:creasingly contributes to the mean activation. At an extremely
large3, the rule of (12) obeys the principle of winner-take-all,
JIRRARCIRNY 2 and the system behaves in conformity with nonoverlapping pro-
Lo = 2 Z Z Z Bink [l () = P ©) jection. Thes parameter clearly modulates the degree of over-

=Li=li=l lapping projection. With Potts encoding, the adaptatioof
subject to toward the minimum value of marginal entrop (y;) in (14)
X can be directly realized by the gradient descent method.
Z S =1, forallé, ¢ (10) 'I_'he new IQA algqnthm |t9rat|vely execgtes.the adaptatlo_n of
Pt an intermediate mixing matrix and the estimation of all marginal
S € {0, 1), foralls, ¢, k. entropies as the annealing process is carried out. Returning to

the KL divergence in (8) one can derive the overall algorithm.
If the only active bitin every membership vecr has anindex By neglecting the first term, replacing the last term with the dis-
identical toarg ming, ||y; () — hix||, L1 is minimized. The min- crete marginal entropy in (14) and inserting the objective func-
imizer {&;,} is a map of the nonoverlapping projection. For &on L; with corresponding constraints, we model the task of
fixed W, the quantity—1/2 ||y (¢) — hik||2 , denoted byE;,, the ICA as a mathematical program which minimizes
is a constant. The objective functién with constraints (10) ex-

N T K
actly describe_s an inte_ractive_neural system, as every member- L = 1 Z Z Z Siere ||Wix(t) = har||?
ship vectors;, is associated with a Potts neuron. In an analogy 2= 1
with statistical mechanism under thermal equilibrium, the mean + Oy (—log |det (W)))
field theory states that the probability &f; being active, or the N K
expected value of;;; is proportional to the following Boltz- + O <_ Z Zp”“ log pm) (15)
mann distribution P
Pr (Six = 1) = (8;2.) subject to
xp (BE; 11 Ll
o oxp (ABirk) an S G =L 1<i< N, 1<t<T (16)
wheres3 denotes the inverse of an artificial temperature Bpg k=1
is the local mean field. According to the unitary constraint in S €10, 1}, foralli ¢, & a7)
(10), the probabilityPr(6;: = 1) has the following normalized 1 X
form: pikITZ(sitk,lgiSN,lSkSK (18)
t=1
Pr (6 =1) = ;Xp(ﬂ- (12)  whereC, andC, are weighting constants. The task of ICA now
Z exp (BE;y) turns to find{é;; } andW which satisfy the constraints and min-

=1 imize the objectivel’. The mathematical framework consists
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of a mixed linear and integer program. The variallés} are of v;;. The stationary point of the free energy function embodies
discrete nonordered Potts neural variables for the combinatotta following mean field equations:
projection, and the demixing matr®W represents continuous b _OL(v, W)

geometrical features. To develop our algorithm, we apply a hy =0=u, = (22)
brid of the mean field annealing and the gradient descent method Vit Ovit ,
to optimize these two kinds of variables.

When we treat all membership vectdi&;, } as Potts neural 9 _ 0= vy = exp (Buin) X (Buier)
variables, the first two constraints (16) and (17) are naturallydWit Zexp (Buin) Zexp (Buin)
taken over by the property of the Potts neural activation function 1 1
asin (12). By further substituting the constraints (18) int@all (23)
in the object|ve_(15) and fqllowmg the optw_mzahon procedu_rce)f which the detailed form is
through mean field annealing, we can rewrite the programming
(15)—(18) as minimizing the following energy function: Witk = _% |Wx(t) — hik||2

L6,W =1 (5i‘WiXt—hi‘2 T
6.9 ST T it -l (i) o
+ C1(— log |det (W)|) t=1
Gy 1 Vi = _exp (Buink) (25)
+ T <— zz: zt: zk: Sisx log <T zt: 5itk> ) zl: exp (/ﬂml)

(19) where the constant terms in (24) have been neglected.
whereé denotes the collection of al;;. By fixing W, at each During the stage in which the mean configuration of Potts
temperature, the mean field annealing seeks the mean configeural variables at eaghvalue is evaluated, the demixing ma-
ration (§) under thermal equilibrium, where the probability otrix W is considered constant. Then the mean configuration
the system configuration is proportional to the following Boltzteeds back to the adaptation of the demixing matrix. By applying

mann distribution the gradient descent method to the free energy, we have the fol-
Py (8) o exp (—BL(6)) (20) lowing updating rule for each elemew ,,,,, in the matrixW':
oY OL(v,W
whereL(8) with only one argument denotes that the other argu- AW, = —778“;/ = -7 8%\7 ) (26)

mentW has been considered constant. At a sufficiently latge

value, the Boltzmann distribution leads to an optimal configu- 1
ration == |[CL (W) + DD Vi
t k

lim Pr(6*)=1
where foo ' (me(t) - hmk) Xn(t) . (27)
L(§") = HfsinL(‘s)' The mean field equations (24) and (25) and the updating rule

To approximate the optimal configuration, the mean fiel$127) constitute the following ICA algorithm.

annealing tracks the mean configuration along the annealing_,L
process, which gradually increases theparameter from a ' . . :
sufficiently low value to a large one. At ea¢hvalue, the mean value, W as an identity matrix and
field equations iteratively run to reach a fixed point which every vy as a value near 1/K.
approximates the mean configuration. The mean configurationz' Update every — wiy, and v by (24) and
obtained at eachs value is consequently used as an initial (25) iteratively to a stationary point.

mean configuration for evolution to the subsequgntalue. 3. Update W by (27).

Initialize [ as a sufficiently low

5

The mean field equations can be derived from the following 4. " I t?ﬁ V";Iul(; . itk Ut”ﬁ"‘ Is less tha;n al

free energy function which have been proposed by PetersoAga Ing hreshold, increase the £ value
y an annealing schedule and then go to

and Soderberg [25]

P, v, W, 8) = L(v, W)+ > Vi

step 2; otherwise halt.

The convergence of the algorithm is shown in the Appendix.
1 The above approach is an energy-function-oriented neural

B /_3 Z zt: o #(wi, ) network, which is composed of two sets of interactive dynamics,

‘ (24), (25), and (27), for the evolution of Potts neural activations

2(wi, ) = Z exp (Bita) (21) and the demixing matrix, respectively. The two sets of inter-

@ active dynamics are iteratively executed toward the minimum
wherev;, denotes the mean 6f,, v denotes a collection of all of the energy function (19) along the annealing process. The
vit, W IS an auxiliary vector, anst!, denotes the transpositionenergy function is essentially equivalent to the KL divergence,



206 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

2 1 T 1 1 1 1 1 1 1
o SV AP A A MM W A AW
_2 4 1 1 1 1 [ 1 L 1
0 20 40 60 80 100 120 140 160 180 200
2 ) ] T 1 1 1] 1 ) |
0 [\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\
_2 1 [ 1 { [ I [ 1 [
0 20 40 60 80 100 120 140 160 180 200
2 1 ) ) ] | B 1 1 ) 1
o\ AW N W W W W
_2 Il [} L q 1 =l [ 1 L
20 20 40 60 80 100 120 140 160 180 200
1 1 T | 1 4 ) ¥ 1 )
AT A AT AT AT
_2 1 [ 1 [ Il 1 [ [l 1
20 20 40 60 80 100 120 140 160 180 200
1 1] 1 1} 1 1 1 1] L
MAWWAWWAAWAAWWAAAAAVWANANM
_2 1 i 1 [ 1 1 [} [ [
0 20 40 60 80 100 120 140 160 180 200

Fig. 1. The five source signals in the first test.

which has been encoded with the criteria for independent outpuftereg;; denotes the joint element of thth row and thejth
components without any assumption about the prior distribaselumn of the product of the mixing matrix and the demixing
tions of the unknown sources. matrix. We explore the performance and stability of the new al-
All means{v;;;. } obtained at step 2 denote the result of ovegorithm by comparison with the fast fixed point algorithm (Fas-
lapping projections of all observations into output componenti€A) [16], [15] and the JadelCA approach [6], [7].
via currentW. Comparison of the local mean field,; in (24) The following sources have been used by Anetrial. in
with E;4, in (12). w4, depends on allmeang,,, 1 <t < T, [1], s(t) = [sign(cos (27155¢)), sin (27800¢), sin (27300t +
but F;41, is constantu,,;, is influenced by the projection feature6 cos (2760t)), sin (2790t), r(¢)]', where the first four compo-
as well as the term oriented by the minimization of the marginaénts ofs(¢) are modulating the data signals af(d) is a noise
entropy H;(y;). The minimization of the KL divergence in (8) uniformly distributed in[—1, 1]. Assume that the five sources
has been decomposed into the maximization of the joint entropse unknown to the algorithms and are mixed by a mixing ma-
H (y) and the minimization of all marginal entropifs(y; ). The  trix A ,of which the diagonal entries are randomly generated by
updaterulein (27)isresponsible for the maximization of the joifit8+ (2 —0.5) 0.3 and the off-diagonal entries are generated by
entropy. The two subtasks at steps 2 and 3 are joined by the first+(z—0.5)*0.3, wherez is of a uniform distribution irf0, 1].
term of the energy functioh in (19), which allows the firstterm The source signals are shown in Fig. 1 and their normalized his-
in (24) andthe secondtermin (27) to producereliable projectionsgrams are shown in Fig. 2. The mixed signals are sampled at
The competitive mechanism in (25) and the annealing procesaaampling rate of 10K Hz. We feed the first 200 samples of the
step 4 subsequently modulate the degree of overlapping projetxed signals in Fig. 3 to the three algorithms. In the simulation
tions in an attempt to minimize the energy functibn of the PottsICA, the parameter setting includes the learning rate
7 = 0.0021in (27), and the weight§'1 = 8, C2 = 2in(19). For
the annealing process, the artificial temperature or the inverse of
the 3 parameter has an initial valize5 and a decreasing factor
In the following simulations, we use the performance me#&:95. The second step in the procedure is executed no more than
sure proposed by Amaeit al. [1]. 20 times and the third step is executed ten times. The halting
condition in the last step i§_ v7, < 0.95NT, for this case
N [N lgis | N N lgis | N = 5and? = 200. The input to thg log function in (24)
E= Z Z —— 1|+ Z Z 1 is automatically added by a constalit— to avoid vanishing
max g max || to zero. The partition parametgr, is —1 + (2k — 1)/K and
(28) K = 20.The PottsICA was coded in MATLAB and executed in

I1l. NUMERICAL SIMULATIONS AND CONCLUSION

1=
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Fig. 2. The normalized histograms of the five sources in Fig. 1.
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Fig. 3. The mixed signals of the source signals in Fig. 1 by a randomly generated mixing matrix.

Pentium Ill. The MATLAB codes for the FastICA and JadelCAof [15], [16] and [6], [7]. Fig. 4 shows the signals separated by
were downloaded from the homepages provided by the authtite PottsICA. The same experiment was repeated ten times. For
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Fig. 4. The recovered signals by the PottsICA from the mixed signals in Fig. 3.

each repetition the mixing matrix and the source signal were re- TABLE |
newed. The mean of the performance measure in (28) over the THE PERFORMANCE OF THETHREE ALGORITHMS FOR THETESTS

ten experiments for each of the three algorithms is listed in fir

row of Table 1. mean E PottsICA | JadeICA | FastICA | cpu-time(PottsICA)
The second test adds a Gf_;lussian noise with Mean Zero gyample 1(N=5) | 0.28 0.60 075 314 secs

variance 0.25 to the sources in the last test as the sixth soul

and the resulting performance of the three algorithms is listiexample 2(N=6) |  1.28 3.02 197 400 secs

in the second row of Table I. The third row of the same tabl

. L . = ' : 11.07

lists the result for another test with eight sources, for which t =@2e $N=8) | 440 1530 0 566 secs

two additional sources are in a sub-Gaussian distribution and
a super-Gaussian distribution, respectively. The sub-Gaussiaftest is listed in Table III, in which the sources include one
is of the distribution (N(y, 0%) + N(—u, 0%))/2, where Gaussian source with mean= 0.5 and variancer®> = 0.25
N(u, 0?) is the normal density with meap = 0.5 and andV — 1 uniform sources in intervdl-0.5, 0.5]. For cases in
variances® = 0.25. The super-Gaussian source is generatgghich problem size is larger than 15, the FastICA failed to re-
by n/2 + 1/4 * sinh(n), where a random variable is in  cover all sources due to divergence of some components and the
a Gaussian density with mean zero and variance 0.25. Tdsrresponding performance is replaced by a markThe per-
normalized histograms of the eight sources are shown in Figf&rmance in Tables Il and Il shows that the PottsICA is better
For all three tests, the PottsICA is better than the other twean the other two algorithms. This superiority becomes more
algorithms in performance, but the other two algorithms akggnificant as the problem size becomes large.
superior to the PottsICA in speed. The last column of Table | The extension of the Potts encoding to the task of ICA has
lists the average CPU-time of the PottsICA. This result waseen demonstrated in this work. We have employed mean acti-
achieved using a sequential machine, but PottsICA may Bgtions of Potts neural variables to realize overlapping projec-
executed in a parallel machine or a delicate machine to impraygns from observations to output components. The interactions
computational speed. between the estimation of the individual marginal entropy for a
The following test explores the dependence of the perfdractable KL divergence and the adaptation of the intermediate
mance on problem size. The source number is increased onelbynixing matrix is well developed by the optimization structure
one fromN = 2to N = 20. Table Il lists the result of sepa- of mean field annealing. For independent component analysis,
rating uniform distributions by the three algorithms. Every uniwe have derived a novel energy function, to which a hybrid of
form distribution is in interva]—0.5, 0.5]. The result of a sim- the mean field annealing and the gradient descent method has
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Fig. 5. The normalized histograms of eight sources for the third test in Table I.

been applied. The two sets of interactive dynamics, (24), (28ptained by the collective decision of the PottsICA is reliable

and (27), are shown to be effective for ICA by our numericah quality, which has been shown by our numerical simulations.

simulations. In comparison with the JadelCA and the FastiC&gcond, the PottsICA is suitable for a parallel and distributed
the new algorithm does a better job of handling the sourcpscess and can be significantly speeded up by a parallel
whether uniform, sub-Gaussian or super-Gaussian in distribuachine or a delicate hardware. The PottsICA has potential for
tion, and the new algorithm is still reliable for cases involving eeal applications. In addition, we are interested in extending
larger number of sources. For all of our tests, the new algorithimne current work to include overcomplete representations and
uses the same set of parameters. Since there is no prior assumptinear ICA in future work.

tion concerning the distributions of the sources in the derivation,

there is no need to use different objectives for different distri- APPENDIX

ions of rces. The result of our numerical simulations ar . :
E:Lgufa(;ir?gu ces. The result of our numerical simulations a eThat steps 2 and 3 in the ICA algorithm converge can be

Like the other complex tasks, such as constrained Oprt)l[oved by follows. Rewrite the mean field equations in the con-

mizations [25], and unsupervised learning [12], [22], th%ext as the following continuous form:

ICA problem is solved by an energy-function-oriented neural du; M —OL(v, W)

network. It is notable that the two sets of interactive dynamics, a - av. v (29)
(24), (25), and (27), are similar to those of the elastic net for " "

the task of self-organization [12], [22]. The key is the Potts

encoding, by which the KL divergence for the ICA is connected Y exp (SBu;j1) exp (BuijK)
to the proposed energy function in this work. The usage of Potts A R B
neural variables for resolving the individual marginal entropy zl:eXp (Auigo) zl:eXp (Auigo)
directly addresses the core issue involved in reducing the KL

divergence for the ICA. The new algorithm possesses the _ Z exp (Buijx) . (31)
following two computational advantages of the energy function - —Z exp (Fuise) k

oriented neural networks as in [25], [22]. First, the solution 7

(30)
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TABLE 1 TABLE I
TEST PERFORMANCE OF THETHREE ALGORITHMS FORDIFFERENT PROBLEM TEST PERFORMANCE OF THETHREE ALGORITHMS FORDIFFERENT PROBLEM
SIZES WITH ALL SOURCES INUNIFORM DISTRIBUTIONS SIZES WITH ONE GAUSSIAN SOURCE AND N — 1 UNIFORM SOURCES
mean E | PottsICA | JadeICA | FastICA | cpu-time (secs) of PottsICA mean E | PottsICA | JadeICA | FastICA | cpu-time(secs) of PottsICA
N=2 0.13 0.17 0.18 153 N=2 0.31 0.27 0.31 145
N= 0.38 0.48 0.64 224 N=3 0.77 0.73 0.92 216
N=4 0.84 0.91 1.13 317 N=4 1.35 1.37 1.38 298
N=5 1.48 1.66 245 386 N=5 2.21 2.69 2.66 381
N=6 2.00 2.73 3.77 460 N=6 3.21 5.16 4.26 439
N=7 3.19 3.64 5.50 556 N=7 3.95 5.09 5.68 531
N=8 4.88 6.54 7.35 619 N=8 5.48 17.96 8.87 605
N=9 6.41 13.20 11.26 716 N=9 7.28 19.75 15.20 688
N=10 7.98 33.85 16.91 782 N=10 9.02 48.03 20.67 763
N=11 9.64 77.96 24.04 861 N=11 11.18 74.30 22.30 853
N=12 13.37 115.26 | 38.82 950 N=12 14.27 110.57 | 36.10 949
N=13 15.74 141.02 | 40.64 1040 N=13 17.49 13384 | 55.21 1024
N=14 18.00 166.29 55.52 1123 N=14 20.72 155.62 72.72 1107
N=15 21.82 183.66 76.51 1199 N=15 23.86 173.66 76.04 1188
N=16 25.81 208.93 * 1322 N=16 27.38 201.70 * 1309
N=17 29.24 233.51 * 1363 N=17 32.80 235.56 * 1364
N=18 34.67 260.71 * 1437 N=18 36.86 255.16 * 1422
N=19 39.53 292.50 * 1525 N=19 44.28 285.16 * 1534
N=20 44.63 323.31 * 1614 N=20 47.52 313.09 * 1625

where vector, is a standard unit vector of which thgh el- whereA is the Hessian of1 z(u;;, )

ement is one. Then rewrite the updating rule as the following Z exp (Bv);00)[on — vijllon — vig]
dynamics: [on]
A=
Z exp (Bv};0%)
dwrnn _ 81/) aL(Vv W) [o]
=-n =N
dt IW o IW o [ox] runs over{es, ..., ex }. SinceA is positive definite
duw\’ A
Then the convergence of the free enetgywlong the trace of < ”) <A ”) >0
two sets of dynamics can be shown dt dt
dy/dt < 0is shown.
dy _ oy \' dvy; O\ AW ACKNOWLEDGMENT
dt Z <8vij> dt + Z IWon dt ) ) )
& mn The authors would like to thank the reviewers for fruitful
comments.
__ Z du“ ! Adu“
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