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Abstract

This work proposes an unsupervised learning process for analysis of natural images. The derivation is based on a generative model, a
stochastic coin-flip process directly operating on many disjoint multivariate Gaussian distributions. Following the maximal likelihood
principle and using the Potts encoding, the goodness-of-fit of the generative model to tremendous patches randomly sampled from natural
images is quantitatively expressed by an objective function subject to a set of constraints. By further combination of the objective function
and the minimal wiring criterion, we achieve a mixed integer and linear programming. A hybrid of the mean field annealing and the gradient
descent method is applied to the mathematical framework and produces three sets of interactive dynamics for the learning process. Numerical
simulations show that the learning process is effective for extraction of orientation, localization and bandpass features and the generative
model can make an ensemble of a sparse code for natural images. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analysis of natural images has been recently considered
as an essential task toward exploring the formation of recep-
tive fields in visual cortex. The task in previous works
(Olshausen & Field, 1996; Hateren van & Ruderman,
1998; Hateren van & van der Schaaf, 1998; Hyvarinen &
Hoyer, 2000) is realized by employing tremendous patches
sampled from natural images for emulating a stimulating
environment to an artificial vision system, simulating the
underlying mechanism of the formation of receptive fields
by an unsupervised learning process, and then explores the
biological plausibility of the learning process based on
comparisons between the properties of real and artificial
receptive fields.

Recently, typical approaches (Hateren van & Ruderman,
1998; Hateren van & van der Schaaf, 1998; Hyvarinen &
Hoyer, 2000) to analysis of natural images have been devel-
oped based on the unsupervised learning process of inde-
pendent component analysis(Lin, Cowan, & Grier, 1997a,b;
Hyvirinen & Oja, 1997; Hyvarinen, 1999). The target is to
seek a set of independent filters or a basis for internal repre-
sentations of natural images under the conjecture of existing
statistical dependency among components of patches of
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natural images. Once projected on independent filters,
image patches are expected to form independent compo-
nents whose joint distribution tends to be identical to the
product of all corresponding marginal distributions. It has
been stated in previous works (Olshausen & Field, 1996;
Hateren van & Ruderman, 1998; Hateren van & van der
Schaaf, 1998; Hyvarinen & Hoyer, 2000) that the obtained
independent filters possess similar features of localization,
orientation and bandpass to those of receptive fields in
visual cortex.

The other possible approaches to analysis of natural
images are based on self-organizing algorithms (Durbin &
Willshaw, 1987; Durbin & Mitchison, 1990; Kohonen,
1982; Liou & Wu, 1996), which aim to seek a set of radial
basis receptive fields as well as their ordering on a cortex-
like lattice. The issue addresses on the coherent mapping via
a dimensional reduction framework and topology preserva-
tion. Typical self-organizing algorithms, including the
Kohonen self-organizing algorithm (Kohonen, 1982) and
the elastic net algorithm (Durbin & Willshaw, 1987; Durbin
& Mitchison, 1990), are effective for exploration of the
formation of ocular dominance stripes and orientation
modules in visual cortex (Durbin & Mitchison, 1990;
Piepenbrock, Ritter, & Obermayer, 1997, 1998; Yulle,
Kolodny, & Lee, 1996). Unfortunately, these applications
deal with artificial stimulus instead of real stimulus like
natural images, where each artificial stimuli is numerically
encoded with a distinct line feature, probably including
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the orientation, location coordinates, and the stereo
information. Given such a set of artificial stimulus, the
self-organizing algorithm is employed to seek a set of corti-
cal points as well as their ordering on a cortex-like map, and
then the distribution of the obtained cortical points on the
cortex-like map is compared with the topology of ocular
dominant stripes and orientation modules discovered in
visual cortex for biological comprehension. In comparison
with real stimulus like natural images, components of the
artificial stimulus are statistically independent and in smal-
ler size. In the self-organizing algorithm, it is well known
that the similarity measure for the adaptation of cortical
points is extensively based on the Euclidean distance.
Extending the self-organizing algorithms to real stimulus
like natural images faces on the suitability of the Euclidean
measure under the assumption of statistical dependency
among a large size of components. It has been pointed out
that the self-organizing algorithm results in non-faithful
representations (Lin et al., 1997a,b) when applied to real
stimulus. To overcome this difficulty and achieve faithful
representations for natural images, this work employs the
Mahalanobis distance for similarity measure between two
real stimuli. Following the motivation, we developed a
novel unsupervised learning process, called natural elastic
net, for analysis of natural images. The natural elastic net is
well equipped with a compensating process for statistical
dependency among components of real stimulus, and can be
considered as a combinatorial framework of the self-
organizing algorithm and independent component analysis
for a sparse code of real stimulus.

The derivation of the natural elastic net starts with a
generative model, which is used to characterize the distribu-
tion of natural images. The generative model is a flip-coin
stochastic process containing M* multivariate disjoint Gaus-
sian distributions. The number of disjoint distributions is
designed to coincide with neural nodes on the cortex-like
map. According to a set of prior probabilities, each time the
stochastic process randomly selects one of M? disjoint
distributions and uses it to generate a stimuli. The parameter
of the generative model contains M* local means or cortical
points and a common covariance matrix. Ideally, these
cortical points can be sparsely distributed among the
space of real stimulus such that each cortical point is located
at the center of a natural cluster of stimulus, and the struc-
ture of statistical dependency among components of real
stimulus can be effectively captured by the covariance
matrix. The distribution of images produced by the
generative model is general enough to characterize real
stimulus, and is indeed beyond a single multivariate
Gaussian distribution.

Following the maximal likelihood principle, the fitness of
the generative model to real stimulus can be further
expressed as a quantitative objective via the formulation
of Potts encoding (Peterson & Soderberg, 1989; Wu &
Lin, 2000; Wu & Chiu, 2001). The estimation of parameters
in the generative model thus turns to be a constrained

optimization. Under the definition of the generative
model, a real stimuli is assumed to be a result of one and
only one disjoint distribution, so its unique unknown source
can be expressed as a Potts neural variable, which is a stan-
dard unitary vector with M binary elements. With the Potts
encoding, following the maximal likelihood principle, the
goodness-of-fit of the generative model to real stimulus is
formulated to be proportional to a log likelihood function or
an objective function subject to a set of constraints. To
achieve a coherent mapping, the objective function is
further combined with the minimal wiring criterion
proposed by Durbin and Willshaw (1987) to form a mathe-
matical framework for the natural elastic net. The mathe-
matical framework is composed of two sets of continuous
variables and one set of discrete variables respectively
encoding cortical points, a covariance matrix and member-
ship vectors. It is exactly a mixed integer and linear
programming (MILP). A hybrid of the mean field annealing
and the gradient descent method is applied to the optimiza-
tion of the mathematical framework to overcome computa-
tional difficulty in solving a MILP. As a result, three sets of
interactive dynamics are derived for the learning process,
and the evolution of the interactive dynamics is well modu-
lated by an annealing process in analogy with the physical
annealing to achieve reliable self-organization. At each
temperature, the learning process employs a set of mean
field equations to trace the mean configuration of discrete
variables under thermal equilibrium subject to maximal
entropy and minimal mean energy; then based on the
mean configuration, the other two sets of dynamics update
the instance of continuous variables toward the minimum of
the mean energy. The elastic net algorithm of Durbin and
Willshaw can be proved as a special case of the learning
process developed in this work.

When applying the new learning process to tremendous
patches sampled from natural images, we have a set of
sparsely distributed cortical points as internal representa-
tions, a covariance matrix for similarity measure, and an
ordering structure of cortical points on a cortex-like lattice.
By numerical simulations, it is shown that the cortical points
or local means obtained by the new learning process make
an ensemble of features of localization, orientation and
bandpass as receptive fields discovered in visual cortex.

This article is organized as follows. The generative model
and the mathematical framework for the natural elastic net
are developed in Section 2, the three sets of interactive
dynamics are derived in Section 3. Numerical simulations
for learning the generative model of natural images and our
conclusions are presented in Sections 4 and 5 respectively.

2. The natural elastic net
2.1. A generative model for natural images

The typical self-organizing algorithm, such as the Kohonen
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Fig. 1. The generative model.

algorithm (Kohonen, 1982) and the elastic net algorithm
(Durbin & Willshaw, 1987; Durbin & Mitchison, 1990), is
used to construct a coherent mapping from a parameter
space R to a two dimensional M X M lattice based on a
set of training stimulus {x; € R‘,1 =i =N}, where d, M
and N are positive integers with N > M?. On the lattice,
each node is attached with a cortical point belonging to R?
and these cortical points {y, € R, 1 =k =M*}, are
adapted to form effective internal representations for train-
ing stimulus. The mapping is defined by a non-overlapping
Voronoi partition {{);} into the parameter space, where
Q; = {xfarg ming [x — y;l| =j,x € R} and [x| denotes
the Euclidean length of a vector x. It follows that the
union of all regions is the space RY; the intersection of any
two distinct regions is an empty set; each stimuli is mapped
to one and only one internal region. Such a mapping is
coherent if nearby stimulus in the parameter space are
mapped to nodes as closely as possible on the lattice and
the utilization of nodes is extensively maximized. By a
coherent mapping, the topology relation within training
stimulus is expected to be reserved and turn visible on the
lattice. The self-organizing algorithm has been applied to
the exploration of ocular dominance bands and orientation
modules in visual cortex (Durbin & Mitchison, 1990;
Piepenbrock et al., 1997; Yulle et al., 1996).

Since the use of the Euclidean distance may not be suita-
ble for the case of real stimulus, which are likely to have
statistically dependent components, we propose the follow-
ing generative model to derive the natural elastic net for
analysis of real stimulus.

The generative model is a flip-coin process directly oper-
ating on M* disjoint multivariate Gaussian distributions as
shown in Fig. 1. Each time the process randomly selects one
distribution according to the prior probabilities {m, 1 =
k = M*}, and then triggers the selected distribution to
generate a training stimuli. Let 7 be 1/K for all k and K =
M?, indicating an equal selection among disjoint distribu-
tions. Assume that all of training patches sampled from
natural images are results produced by the generative
model and each individual distribution is as the following

multivariate Gaussian distribution

Py(x) = P(x|y, Ap)

(= 3 Arx = ) ) "

Q ﬂ.)d/z | A]:l | ( 2

where y, and A; ' are the local mean and the covariance
matrix respectively, A71| denotes the determinant of the
inverse of the matrix A, and x' denotes the transpose of
vector x. To facilitate the forthcoming computation, the
covariance matrix A; ! of each individual distribution is
set to be a common covariance matrix A~

2.2. The mathematical framework

The Potts encoding is employed to facilitate the optimi-
zation of the generative model. According to the flip-coin
process, each stimuli x; is generated by one and only one
individual distribution. Let the Potts neural variable §; =
[8i1, ..., 8;x]" denote the membership of x; with §; € {0,1}
for all k and > 8;, = 1. Therefore each §; belongs the set of
{ek, 1 =k = K}, where e* is a standard unitary vector with
the kth element one and the others zero. If §; is ek, it is said
that the ith training stimuli is generated by the kth individual
distribution. The following local log likelihood function can
then quantitatively measure the fitness of the individual
distribution P, to all of training stimulus whose membership
vectors are e,

L=1log [] Pxd= D logPx;) )

{i:6;=€"} {i:6,=¢"}

By summing up all /;, we have the following log likelihood
function

= ;lk = Z Z log P(x;) = Z ; Oylog Py (x;)

ko {i:8=ek}

1 1 ~
= Z Z 8ik( - E(xi =y A; = y) — Elog A~
ik
d
- Elog(Zw))
= ! 8 ZA Nl A—l
__zz; i (Xi — Vi) (xi_yk)_50g| |

Nd
By neglecting the last constant term, reversing the sign and
using the fact log |A™'| = — log |A|,we obtain the first
objective for the natural elastic net as follows

. N
By =5 > >l —y'A =y — Slogldl ()
ik
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The maximization of / is equivalent to the minimization of
E| subject to the constraint of §; € {ek, 1 =k=K}foralli.
Further consider the optimal order of cortical points on
the lattice. When receiving a distinct stimulus, a coherent
mapping derived by self-organization is expected to respond
in locality. It follows that the winner has the most intensive
response and those surrounding the winner respond with
decreasing intensity along the distance from its own location
to that of the winner on the map, where a node with a
cortical point closest to the stimuli among all cortical points
is the winner. Following the minimal wiring principle, two
nearby cortical points on the map should be as close as
possible, which leads to the following minimal wiring
criterion (Durbin & Willshaw, 1987; Durbin & Mitchison,
1990) for an effective dimensional-reduction mapping,

1
Ey=3 D - n (5)

k JENBK)

where NB(k) is a set of all nodes connecting to the kth node
on the lattice and ||y} denotes the Mahalanobis square
length of a vector y, which is defined by M|z = y'Ay.
Minimizing a weighted combination of E; and E, leads to
the following mathematical framework for the natural elas-
tic net.
Minimize

1 N
E=E +CE, = 5 D> Sl — wlla = Elog A
T

+§Z > v il ©)

k JENB(K)
subject to

> s =1, Vi 7
k

where C is a weighting constant.

The above mathematical framework is derived via devis-
ing a generative model for characterizing the distribution of
real stimulus, using the Potts encoding to realize the log
likelihood function, and combining the minimal wiring
criterion to the objective function E|. In the objective func-
tion E, the first term costs the distance between each stimuli
and its representative as a quantitative measure for effective
clustering; the second term maximizes the determinant of
the matrix A, also the volume of a corresponding d dimen-
sional parallel polyhedron; the last term costs the distance
between any two neighboring cortical points on the lattice as
a minimal wiring criterion. The distance is the Mahalanobis
distance associated with the matrix A. The constraint is the
unitary condition of Potts neural variables. The learning
process of the natural elastic net is exactly an optimization
process for the mathematical framework, which searches for
parameters of the generative model suitable for training
stimulus and simultaneously organizes cortical points
on the cortex-like lattice following the minimal wiring

principle. If the matrix A is an identity matrix, the
mathematical framework is reduced to the original elastic
net (Durbin & Willshaw, 1987; Liou & Wu, 1996), with a
similarity measure based on the Euclidean distance, which
is valid under the assumption of statistical independency
among the components of training stimulus.

3. Dynamics for the natural elastic net

The above mathematical framework is a mixed integer
and linear programming. The optimization task involves
with discrete combinatorial variables {6;} and continuous
geometrical variables {y.}, and the matrix A. Since the
energy function E is not differentiable with respect to
discrete variables, the gradient descent method cannot be
directly applied to the mathematical framework. By relating
each membership vector §; to a Potts neural variable, the
optimization task can be treated by a hybrid of the mean
field annealing and the gradient descent, which has been
successfully applied to the derivation of independent
component analysis using Potts models (Wu & Chiu, 2001).

The mean field annealing is employed to search for opti-
mal Potts neural variables near or at the global minimum of
the energy function E. When given particular A and {y;}, at
each temperature, the annealing process seeks the mean
configuration (5) of all discrete variables {§;} satisfying
the condition of thermal equilibrium, which says that the
probability of the system configuration is proportional to the
Boltzmann distribution, such as

Pr(6) oc exp(—BE(S

A, Y)), ®)

where E(8|A,Y) denotes the conditional energy function
given A and Y, the parameter B denotes the inverse of an
artificial temperature, and Y denotes a collection of all y;. At
a sufficiently low B value, probabilities of feasible config-
urations are likely identical, and the mean configuration is at
a trivial solution with each element (§;) equal to 1/K. In
contrast, at a sufficiently large B value, the Boltzmann
distribution is dominated by the optimal configuration,
such as

1, ifé6=24¢"
lim Pr(6) =
Eate 0, otherwise
where
E(8"|A,Y) = msinE(SA, Y)

To approximate the optimal configuration, a set of mean
field equations are used to track the mean configuration
along the annealing process, where the 3 value is gradually
increased from a sufficiently low value to a large one. At
each B value, the mean field equations iteratively execute to
reach a fixed point as an approximation to the mean
configuration. The mean configuration obtained at one 3
value is considered as an initial instance for the relaxation
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at a subsequent 3 value. The mean field equation can be
derived from the following free energy function similar to
the one proposed by Peterson and Soderberg (1989)

WA, Y, (8),u) = E(A, Y, (8) + D D (8t

i m

- % Zln(Zexp(Bw) ©)

where u denote the set {u;} and each u; is an auxiliary vector.
By setting

d
a<5ﬁ,> =O0foralli,m (10)
i = (0 forall i,m (11)
aI/lim

we have the following mean field equation for evaluating
mean activations of discrete neural variables

oE 1

Upy = — FORSE E(xi = Y AG; = V) (12)
exp(Bujy,)

Om) = ~—~————— 13

(O ZCXP(B“ik) (1

k

The mean configuration satisfying the mean field Eqgs. (12)
and (13) is a saddle point of the free energy (9) correspond-
ing to a particular 3 value. Based on the mean configuration,
we can apply the gradient descent method to derive the
following updating rule for each y,,.

oFE
Ay,, o< — e (14)

1
Aym = 5 Z<61m>(A + A,)(xi - ym)

c t
+o % (A +ADGy = )
n (m)

To zero gradient, such as Ay,, = 0, we have the following
linear system.

(CNm + Z(Sim»yma -C Z Yna

n€NB(m)

=Y (& 1=Em=K,1=a=d

where N,, denotes the number of nodes in the set NB(m). By
solving the linear system, we have

D1, yk] = (C(H - G)+ Z)"'R (15)

where both H and Z are K X K diagonal matrices with diag-
onal entries H,,, =N,, and Z,, = (5;,), 1 =m =K,
respectively, G is a K X K adjacent matrix corresponding
to the lattice with entries

{ 1, if the mth the node and the nth node are connected,
Gmn =

0 otherwise,
and the matrix R has entries

Rma = Z <6im>xia’

1=m=K, 1

IA
N

lIA
U

The updating rule for each element A, in the matrix A can
be derived as follows

oE

Mg, o< == (16)
1
AAah == E Z Z <8im>(xia - yma)(xia - ymh)
' . (17
=C > Oma = YO =) + S LAY
m  jENB(m)
Again, when AA,, = 0, we have
A=Wl (18)
where
1
Wab = N Z Z<8im>(~xia - yma)(xia - ymb)
2C
+ W Z Z Oma — yja)(ymb - yjb) (19)

m  jENB(m)

The following step-by-step statement is the learning process
for the natural elastic net toward the minimum of the objec-
tive function (6).

1. Initialize B as a sufficiently low value, A = 0.01 X[
(identity matrix),

1 1
Vi = N Z‘xi» (Ou) = X

. Update {{8;,)} by Egs. (12) and (13).

. Update {y,,}by Eq. (15).

. Update A by Egs. (18) and (19).

IS S, (85)* > Othen halt, else 8 — B+ (1/0.98), and
goto step 2, where 6 is a threshold, such as 6 = 0.98"N.

W kAW

4. Numerical simulations

Return to analysis of natural images using the natural
elastic net. The task aims to search for a set of local
means and a matrix A by the proposed learning process
and explore their visual properties. Before dealing with
natural images, the natural elastic net is first applied to an
artificial example of 800 parameters generated by linear
mixtures to verify the capability of the natural elastic net
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Fig. 2. 800 Training parameters, the resulting four cortical points on the
lattice and the two columns of the inverse of the demixing matrix B for the
first example using a 2 X 2 natural elastic net.

in recovering independent components for faithful represen-
tations. It is expected that the natural elastic net is able to
properly locate the sparsely distributed local means and
generate a matrix A essentially capturing the statistical
dependency within the training parameters. On the basis,
the natural elastic net is applied to analysis of natural images
to clarify the role of local means and the matrix A on the
formation of receptive fields in visual cortex.

The learning process is implemented in MATLAB. In the
following experiments, the weighting constant C in Eq. (6)
is 1.8 for the first example and 7.8 for natural images, the
initial B value is 1/1.5, and the scheduling factor is 0.98.

4.1. An artificial problem
As shown in Fig. 2, the 800 training parameters used in
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Fig. 3. 800 Training parameters, the resulting four cortical points on the
lattice and the two columns of the inverse of the demixing matrix B for the
first example using the simplified version of a 2 X 2 original elastic net.
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Fig. 4. The result of a 7 X 7 natural elastic net with 49 nodes for the first
example.

this example are generated by a linear mixture of two
uniform distributions within the interval [—0.5 0.5] via a
randomly generated mixing matrix. Each training parameter
contains a pair of real values and is plotted as a point in a
two dimensional plane as shown from Figs. 2—4. The para-
meters form a parallelogram in shape whose edges are the
two column vectors of the mixing matrix representing the
underlying statistical dependency of two components of
training parameters. A 2 X 2 natural elastic net is used for
this example, and finally results in four cortical points and a
matrix A. The demixing matrix B can be obtained by solving
the relation B'B = A. The four cortical points and the two
columns of the inverse of the demixing matrix B are also
shown in Fig. 2, where the lines connecting four cortical
points denote the neighboring structure on the 2 X 2 lattice.
Based on the similarity measure A, the four cortical points
partition the parameter space into four faithful or equal
regions as shown by large and small dots in Fig. 2, the
matrix A well encodes the structure of statistical depen-
dency embedded within training parameters and the cortical
points are sparsely distributed over the space. The cortical
points accompanied with the matrix A successfully consti-
tute faithful representations for the training parameters.

The simplified natural elastic net is applied to the
same training parameters, where the matrix A is fixed
as an identity matrix. The resulting parameters are
shown in Fig. 3. Although the simplified natural elastic
net employs the same relaxation procedure, due to the
simplified generative model, the obtained partition into
the parameter space is a Voronoi partition, which
captures no features about the mixing structure
embedded within training parameters, and is considered
as non-faithful representations. To demonstrate the relia-
bility of the natural elastic net for the case with a larger
size of cortical points, a 7 X 7 natural elastic net with a
dynamical matrix A is applied to this example. The
resulting parameters are shown in Fig. 4.
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Fig. 5. Some used natural images.

4.2. Analysis of natural images

4.2.1. Natural elastic net

For analysis of natural images, a 16 X 16 natural elastic
net is applied to a set of 20,000 patches, each containing
16 X 16 pixels as a random sample from natural images.
Some of natural images downloaded from the homepage
provided by the author of the works (Hateren van & Ruder-
man, 1998; Hateren van & van der Schaaf, 1998) are shown
in Fig. 5. It takes about 48 h to train the natural elastic net
for 20,000 patches on a personal computer. As a result, the
natural elastic net has 256 cortical points ordered on a

16 X 16 lattice and a matrix A as parameters of the genera-
tive model for 20,000 patches of natural images.

The obtained cortical points essentially extract line
features from natural images. Those cortical points with
different orientations are respectively shown from Figs.
6-9 with their amplitude spectra, where darker grey values
code smaller amplitudes and zero spatial frequency is at the
center of each patch. In the figures, each cortical point y; is
shown by a normalized patch using the formula y; —
yi/max(y; — ;). The orientation of the peak in the amplitude
spectrum of a cortical point is orthogonal to the orientation
of the corresponding line feature and the peak is distributed



344 J.-M. Wu, Z.-H. Lin / Neural Networks 15 (2002) 337-347

o HNESENN
=

30 30 30
@ @ ®
T2 EF ]
10 =10 S50
g g g
(b) &y = Dl Z0
1 -1 -1
% 0
] 0 179 g0 R 0
Frequency Frequency Frequency Frequency Frequency Fraquancy
(c)
30, 30, . el
20 20 20

Magnitude
=)
Mégnnude
=

-“D

—~
.
—

“o

0

1] o 1]
Fraquency 1 Frequency Frequency 1 Frequency Frequency 1 Fraguency

Fig. 6. The first row (a) show cortical points with horizontal orientation and
the third row displays the corresponding amplitude spectra. Some 3D
amplitude spectra are shown in the second (b) and fourth (d) rows.

30 kil 30

P @ ®
32 52 32
510 510 ‘510

ki g Z
(b) =0 Z0 =0
A A A

Ftequen:yl A Fle?}uan:y Frequen:j1 -1 Freoqusncy Frequem:y'

30 an 30
@ o @
320 220 20
510 510 510
3 & &
(d) =40 = ol =
A -1 1
F 1 g 1 0 1 J
requency Frequency Frequency Frequency Freguency | Fraquency

Fig. 7. The first row (a) show cortical points with diagonal orientation and
the third row displays the corresponding amplitude spectra. Some 3D
amplitude spectra are shown in the second (b) and fourth (d) rows.
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Fig. 8. The first row (a) show cortical points with right diagonal orientation
and the third row displays the corresponding amplitude spectra. Some 3D
amplitude spectra are shown in the second (b) and fourth (d) rows.
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Fig. 9. The first row (a) show cortical points with vertical orientation and
the third row displays the corresponding amplitude spectra. Some 3D
amplitude spectra are shown in the second (b) and fourth (d) rows.
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Fig. 10. Some consequent rows of the covariance matrix obtained by the
learning process.

within the scope from low frequency to high frequency.
These line features are similar to those of the bandpass
filters obtained in previous works (Hateren van & Ruder-
man, 1998; Hateren van & van der Schaaf, 1998; Hyvarinen
& Hoyer, 2000). However the line features in previous
works are associated with the demixing structure of inde-
pendent components analysis, but in this work are recog-
nized as local means of the generative model. The cortical
points of the natural elastic net effectively equi-partition the
space of patches into non-overlapping faithful regions based
on a similarity measure of the matrix A, and are regarded as
centers of these internal regions.

The matrix A of the natural elastic net encodes no
property of line features, although the natural elastic net is
developed under the statistical dependency assumption
similar to independent component analysis. Some rows of
the obtained matrix A with their amplitude spectra are
shown in Fig. 10. They describe a type of statistical depen-
dency, but represent no line features. The corresponding
amplitude spectra are dominated by high frequency
responses. By numerical simulations, the natural elastic
net relates line features of natural images to local means
instead of the demixing structure or independent filters.

Fig. 11. Four natural image and their cumulated probabilities of all cortical
points.

Based on the obtained generative model, the probability
response P, (x) of each cortical point y, for a stimuli x in Eq.
(1) can be normalized as follows

exp(—|lx —will)  _ exp(=llz — zl)
Sexp(—lr =yl Dexp(—lz — zl
J j

u(x) =

where z = Bx, z; = By, and A = B'B. If the cumulate prob-
ability of a natural image associated with each cortical point
yi is defined as the sum > , v;(x) over all regularly decom-
posed patches of the image, it may be considered as a quan-
titative consciousness of a natural image. Each of four
natural images in Fig. 11 is decomposed into many
16 X 16 patches such that the 256 cumulate probabilities
of each image are calculated to form a 16 X 16 cumulate
matrix. The four natural images and their corresponding
cumulate matrices are shown in Fig. 11. By human vision,
the natural image in the left-upper corner is significantly
different from the others, which have been selected to be
similar to each other. It is observed that the similarity rela-
tion in the space of the full natural images is reserved in the
space of cumulate matrices by some means. Quantitative
discriminant analysis of the cumulate matrix may be further
related to the task of image classification.

Further defining spatial frequency bandwidth as the full
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Fig. 12. A quantitative comparison of cortical points of nature elastic net
and those in macaque simple cells, where the horizontal axis denotes spatial
frequency bandwidth and the vertical axis denotes occurrence in percen-
tages.

width at half maximum (FWHM) of each cortical point
along the orientation of the peak in the amplitude spectra,
which follows the definition in the work (Hateren van &
Ruderman, 1998), we can draw the distribution of FWHM
of all z; as in Fig. 12. The distribution significantly coincides
with the measurement of cortical receptive fields in
macaque simple cells (DeValois, Yund, & Hepler, 1982a;
DeValois, Albrecht, & Thorell, 1982b), which may present
a possible biological plausibility to the natural elastic net.
The simplified natural elastic net with fixing the matrix A
as an identity matrix is also applied to analysis of natural
images. The simulation condition is the same as in the
previous experiment. The final 16 X 16 cortical points are
shown in Fig. 13. The simplified natural elastic net extracts
features of coarse lines as compared with the line features
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Fig. 13. The cortical points obtained by the simplified natural elastic net.

Fig. 14. The cortical points obtained by the Kohonen self-organizing algo-
rithm.

shown from Figs. 6—9. The dynamical covariance matrix of
the natural elastic net dose not directly relate to the line
features, but it affects the fineness of the extracted line
features by some means.

4.2.2. Kohonen self-organizing algorithm

We further apply the Kohonen self-organizing algorithm
to the same training set of patches of natural images. The
used Matlab program is the SOM Toolbox 2.0 downloaded
from the homepage provided by Kohonen (1982), and the
size of the lattice is also 16 X 16. The overall cortical map
generated by the Kohonen self-organizing algorithm is
shown in Fig. 14, where the corresponding spectral analysis
is not presented. It is observed that the Kohonen self-
organizing algorithm fails to extract line features from
tremendous random patches of natural images.

4.3. Discussions

We have applied the natural elastic net to estimate the
generative model of natural images and have obtained
piece-wise multivariate Gaussian distributions character-
ized by a set of local means and the common covariance
matrix. In the first experiment, the natural elastic net has
successfully captured the statistical dependency within
training parameters via a dynamical matrix A. Besides
following the strategy in previous works (Olshausen &
Field, 1996; Hateren van & Ruderman, 1998; Hateren van
& van der Schaaf, 1998; Hyvarinen & Hoyer, 2000) to
resolve the structure of statistical dependency, the natural
elastic net simultaneously stresses the importance of local
means or radial basis receptive fields. The natural elastic net
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is a whole process of the clustering analysis and indepen-
dent component analysis; it can be used to clarify the role of
local means and the statistical dependency among image
pixels on the formation of receptive fields in visual cortex.
By numerical simulations, it is observed that the local
means are internal representations with line features;
although the matrix A has captured the underlying structure
of statistical dependency among pixels of patches of natural
images, it depicts no line features as receptive fields in
visual cortex. The estimated parameters of the generative
model essentially serve as effective internal representations
of patches of natural images, and their reliability is
supported by the circumspect arrangement of the generative
model, the solid derivation of the parameter estimation and
the accuracy of the neural relaxation based on a hybrid of
the mean field annealing and the gradient descent methods.

5. Conclusions

Based on piecewise multivariate Gaussian distributions,
we have proposed a generative model for characterizing real
stimulus, such as patches of natural images. The fitness of
the generative model to all training patches is further
combined with the minimal wiring criterion to constitute
an optimization framework for deriving the learning process
of the natural elastic net. By applying a hybrid of the mean
field annealing and the gradient descent method to the
mathematical framework, we have three sets of interactive
dynamics for the learning process. It is a generalized version
of the elastic net proposed by Durbin and Willshaw (1987)
with an extensive enhancement on computational accuracy,
and has the following properties for analysis of real
stimulus.

1. The underlying distribution of the generative model is
essential and general for describing real stimulus with
statistical dependent components.

2. The parameters within the generative model can be effec-
tively determined by collective decisions of neural
networks via the neural relaxation based on a hybrid of
the mean field annealing and the gradient descent
method.

3. Subjective to the ordering criterion of self-organization
and the maximal likelihood principle, the local means
and the covariance matrix of the generative models
constitute faithful representations for real stimulus of
an unsupervised learning task.

4. For analysis of natural images, the natural elastic net
provides an alternative biological plausibility for the
formation of receptive fields in visual cortex beyond
the previous works based on independent component

analysis. The extracted line feature is associated with
the local mean of the generative model instead of the
mixing structure of statistical dependent components.
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