Gradient-based deep
learning

gradient descent and batch updating



function err_g=gradient_check2(obj,x,y)
% Calculate gradient of output with respect to w by Richardson
% Extrapolation by flow chart 4.
%x conbtains batch data

L=obj.layers;
M=size(obj.w{L-1},2);
z=0.01;
err_g=0;
for k=1:L-1
W_k=obj.w{k};
RE_gW({k} = zeros(size(W_k));
for i=1:size(W_k,1)
for j=1:size(W_k,2)
%calculate f1 2 {3 f4
obj.w{k}(i,j)=W_Kk(i,j)+z;
obj =obj.ff(x);obj=0bj.cal_se(y);f1=0bj.se;
obj.w{k}i,j)=W_k(i,j)-z;
obj =obj.ff(x);obj=0bj.cal_se(y);f2=0bj.se;
obj.w{k}(i,})=W_Kk(i,j)+z/2;
obj=0bj.ff(x);obj=0bj.cal_se(y);f3=0bj.se;
obj.w{k}(i,j)=W_Kk(i,j)-z/2;
obj=0bj.ff(x);obj=0bj.cal_se(y);f4=0bj.se;
g1=(f1-f2)/(2*z);g2=(f3-f4)/z;
RE_gW({k}i,j)=92+(92-g1)/3;
obj.w{k}i,j)=W_k(i,j);
end
end

err_g=err_g+sum(sum(abs(obj.E_gW{k}-RE_gW{k}')));
end
end % gradient check 2



function show_digits(J,imax,jmax)
for i=1:imax
|2=[|;
for j=1:)max
I=J((i-1)*jmax+j,:);
I=(I-min(l));
I=1/max(abs(l))*255;
12=[12 reshape(l',28,28)];
end
13=[13 ; 12];
end
imshow(I3')

>> |load mnist_uint8;
>> show_digits(train_x(1:25,:),5,5)



Example

load mnist uint8;

train_x = double(train_x) / 255;
test x = double(test x) / 255;
train_y = double(train_y);

test y = double(test_y); preprocess

% normalize
[train_X, mu, sigma] = zscore(train_x);
test_x = normalize(test_x, mu, sigma);

%% ex1 vanilla neural net
rand('state’,0)

nn = nnsetup([784 100 10]);
opts.numepochs = 100; % Number of full sweeps through data
opts.batchsize = 100; % Take a mean gradient step over this many samples
[nn, L] = nntrain(nn, train_x, train_y, opts);

training &
[er, bad] = nntest(nn, test_x, test y);

testing

assert(er < 0.08, 'Too big error’);



epoch 94/100. Took 2.1078 seconds.
epoch 95/100. Took 2.1063 seconds.
epoch 96/100. Took 2.2176 seconds.
epoch 97/100. Took 1.9804 seconds.
epoch 98/100. Took 1.8918 seconds.
epoch 99/100. Took 1.7038 seconds.
epoch 100/100. Took 1.897 seconds.

K>> er

Mini-batch mean squared error on training set is 0.0084362; Full-batch train err = 0.008431
Mini-batch mean squared error on training set is 0.0084341; Full-batch train err = 0.008428
Mini-batch mean squared error on training set is 0.0084317; Full-batch train err = 0.008419
Mini-batch mean squared error on training set is 0.0084266; Full-batch train err = 0.008414
Mini-batch mean squared error on training set is 0.0084164; Full-batch train err = 0.008402
Mini-batch mean squared error on training set is 0.0084094; Full-batch train err = 0.008402
Mini-batch mean squared error on training set is 0.0084034; Full-batch train err = 0.008397



modules

e Set up: specify architecture of a neural network and how
to train weight matrices

e Train: batch updating, feedforward translation and back-
propagation of gradients of outputs with respect to neural
stimuli and activations.

e TJest: verify effectiveness of a neural network subject to
testing data



function nn = nnsetup(architecture)

%NNSETUP creates a Feedforward Backpropagate Neural Network

% nn = nnsetup(architecture) returns an neural network structure with n=numel(architecture)
% layers, architecture being a n x 1 vector of layer sizes e.g. [784 100 10]

nn.size = architecture;
nn.n = numel(nn.size);

nn.activation_function '‘tanh_opt'; % Activation functions of hidden layers: 'sigm' (sigmoid) or 'tanh_opt' (optimal tanh).

N

nn.learningRate = 2; % learning rate Note: typically needs to be lower when using 'sigm' activation function and non-
normalized inputs.

nn.momentum = 0.5; % Momentum

nn.scaling_learningRate = 1; % Scaling factor for the learning rate (each epoch)

nn.weightPenaltylL2 = 0; % L2 regularization

nn.nonSparsityPenalty = 0; % Non sparsity penalty

nn.sparsityTarget = 0.05; % Sparsity target

nn.inputZeroMaskedFraction = 0; % Used for Denoising AutoEncoders

nn.dropoutFraction = 0; % Dropout level (http://www.cs.toronto.edu/~hinton/absps/dropout.pdf)

nn.testing = 0; % Internal variable. nntest sets this to one.

nn.output = 'sigm’; % output unit 'sigm’' (=logistic), 'softmax' and 'linear’

fori=2:nn.n
% weights and weight momentum
nn.W{i - 1} = (rand(nn.size(i), nn.size(i - 1)+1) - 0.5) * 2 * 4 * sqrt(6 / (nn.size(i) + nn.size(i - 1)));
nn.vW{i - 1} = zeros(size(nn.W{i - 1}));

% average activations (for use with sparsity)
nn.p{i} = zeros(1, nn.size(i));
end
end



batch up datlngt

e | arge data size, such as 60000 handwritten
1000,000 color images

e Random partition train_x to many batches

e Jraining data in a batch are employed to calculate
gradients of square errors with respect to weight matrices




nntrain

fori =1 : numepochs
tic;

kk = randperm(m);
for| = 1 : numbatches
batch_x = train_x(kk((I - 1) * batchsize + 1 : | * batchsize), :);

%Add noise to input (for use in denoising autoencoder)
if(nn.inputZeroMaskedFraction ~= 0)

batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction);
end

batch v = train v(kk((l - 1) * batchsize + 1 : | * batchsize), :);

22 : mfbflgr(':;])batm-x’ batch_y); 1. From the first layer to the output layer,
nn = nnapp|yg’rads(nn calculate stimuli, activations and outputs

2.a From the output layer to the first layer, determine gradients
of mse with respect to stimuli and activations

batch

updating 2b. Determine gradients of mse with respect to weight matrices

nn.learningRate = nn.learningRate * nn.scaling_learningRate;
end
end



Exercise

e Try to complete methods of nn_train and nn_test

e Apply codes based on your class perceptrons to
classification of hand-written digits of MNIST dataset



