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Abstract— The Marquardt algorithm for nonlinear least
squares is presented and is incorporated into the backpropagation
algorithm for training feedforward neural networks. The
algorithm is tested on several function approximation problems,
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and is compared with a conjugate gradient algorithm and a "
variable learning rate algorithm. It is found that the Marquardt
algorithm is much more efficient than either of the other
techniques when the network contains no more than a few
hundred weights.
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I. INTRODUCTION

INCE the backpropagation learning algorithm [1] was

first popularized, there has been considerable research
on methods to accelerate the convergence of the algorithm.
This research falls roughly into two categories. The first
category involves the development of ad hoc techniques (e.g.,
[2]-[5]). These techniques include such ideas as varying the
learning rate, using momentum and rescaling variables. An-
other category of research has focused on standard numerical
optimization techniques (e.g., [6]-[9]).

The most popular approaches from the second category have
used conjugate gradient or quasi-Newton (secant) methods.
The quasi-Newton methods are considered to be more efficient,
but their storage and computational requirements go up as the
square of the size of the network. There have been some lim-
ited memory quasi-Newton (one step secant) algorithms that
speed up convergence while limiting memory requirements
[8,10]. If exact line searches are used, the one step secant
methods produce conjugate directions.
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18,10]. If exact line searches are used, the one step secant
methods produce conjugate directions.

Another area of numerical optimization that has been ap-
plied to neural networks is nonlinear least squares [11]-[13].
The more general optimization methods were designed to
work effectively on all sufficiently smooth objective functions.
However, when the form of the objective function is known
it 1s often possible to design more efficient algorithms. One
particular form of objective function that is of interest for neu-
ral networks 1s a sum of squares of other nonlinear functions.
The minimization of objective functions of this type is called
nonlinear least squares.

Most of the applications of nonlinear least squares to neural
networks have concentrated on sequential implementations,
where the weights are updated after each presentation of an
1nput/output pair. This techmque 1s useful when on- lme adap-
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Another area of numerical optimization that has been ap-
plied to neural networks is nonlinear least squares [11]-[13].
The more general optimization methods were designed to
work effectively on all sufficiently smooth objective functions.
However, when the form of the objective function is known
it 1s often possible to design more efficient algorithms. One
particular form of objective function that is of interest for neu-
ral networks is a sum of squares of other nonlinear functions.
The minimization of objective functions of this type is called
nonlinear least squares.

Most of the applications of nonlinear least squares to neural
networks have concentrated on sequential implementations,
where the weights are updated after each presentation of an
input/output pair. This technique is useful when on-line adap-
tation is needed, but it requires that several approximations be
made to the standard algorithms. The standard algorithms are
performed in batch mode, where the weights are only updated
after a complete sweep through the training set.
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Fig. 1. Three-layer feedforward network.

This paper presents the application of a nonlinear least
squares algorithm to the batch training of multi-layer percep-



This paper presents the application of a nonlinear least
squares algorithm to the batch training of multi-layer percep-
trons. For very large networks the memory requirements of
the algorithm make it impractical for most current machines
(as is the case for the quasi-Newton methods). However, for
networks with a few hundred weights the algorithm 1s very
efficient when compared with conjugate gradient techniques.
Section II briefly presents the basic backpropagation algorithm.
The main purpose of this section is to introduce notation
and concepts which are needed to describe the Marquardt
algorithm. The Marquardt algorithm is then presented In
Section III. In Section IV the Marquardt algorithm 1s compared
with the conjugate gradient algorithm and with a variable
learning rate variation of backpropagation. Section V contains
a summary and conclusions.



II. BACKPROPAGATION ALGORITHM

Consider a multilayer feedforward network, such as the
three-layer network of Fig. 1.
The net input to unit ¢ in layer k¥ + 1 is

Sk
nFH1(i) =) wht(E, §)a* () + b5 (). (1)
7=1

The output of unmit z will be
a*T1(d) = fFTH(n"TH(2)). (2)



For an M layer network the system equations in matrix form
are given by

a’=p (3)
gkl = ik+1 (Wk+1gk +bk+1),
kZO,l,“',M—l. (4)

The task of the network is to learn associations between a spec-
tfied set of input—output pairs {(_p_1 ; il)a(ﬁza o)y, (QQ, LQ)}.









The performance index for the network is

@
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where @)’ is the output of the network when the qth input,

» M .
P, 18 presented, and ¢, = {, — a," 18 the error for the gth

input. For the standard backprOpagatlon algorithm we use an

approximate steepest descent rule. The performance index i1s
approximated by

!
= 3% L (6)



where the total sum of squares i1s replaced by the squared
errors for a single input/output pair. The approximate steepest
(gradient) descent algorithm 1s then
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as the sensitivity of the performance index to changes in the
net input of unit 2 in layer £. Now it can be shown, using (1),

(6), and (9), that
av 8V ank()
O wk(i,j) 0 nk(i) O wk(i,j)

= 6*()a*"1(j) (10)
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and

(12)
()
0
- fR(n*(Sk))
(13)
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The overall learning algorithm now proceeds as follows; first,
propagate the input forward using (3)-(4); next, propagate the
sensitivities back using (15) and (12); and finally, update the
weights and offsets using (7), (8), (10), and (11).



I1I. MARQUARDT-LEVENBERG MODIFICATION

While backpropagation is a steepest descent algorithm, the
Marquardt-Levenberg algorithm [14] is an approximation to
Newton’s method. Suppose that we have a function V'(z)
which we want to minimize with respect to the parameter
vector z, then Newton’s method would be

Az = —[V*V(z)]7'VV(z) (16)

where V2V (z) is the Hessian matrix and VV(z) is the
gradient. If we assume that V() is a sum of squares function



where V2V (z) is the Hessian matrix and VV(z) is the
gradient. If we assume that V' (z) is a sum of squares function

=) ei(z) (17)

i=1
then it can be shown that

VV(z) = J' (z)e(z) (18)
ViVi(z) = JH (2)J(z) + S(z) (19)



N
S(z) =) _ei(z)Vesi(z). (21)
=1

For the Gauss-Newton method it is assumed that S{z) ~ 0,
and the update (16) becomes

Az = [JT(z)J(z)] 1T (z)e(z). (22)



The Marquardt-Levenberg modification to the Gauss-Newton
method 1s

Az = [JT(z)J(z) + pI] T (z)e(z). (23)

The parameter u is multiplied by some factor () whenever
a step would result in an increased V(z). When a step
reduces V(z), p is divided by 3. (In Section IV we used
p =0.01 as a starting point, with $=10.) Notice that when
u is large the algorithm becomes steepest descent (with step
1/12), while for small i the algorithm becomes Gauss-Newton.
The Marquardt-Levenberg algorithm can be considered a trust-
region modification to Gauss-Newton [38].




The key step in this algorithm is the computation of the
Jacobian matrix. For the neural network mapping problem
the terms in the Jacobian matrix can be computed by a
simple modification to the backpropagation algorithm. The
performance index for the mapping problem is given by (3). It
is easy to see that this is equivalent in form to (17), where x =
[w! (1, 1)w(1,2) - w! (51, R)b (1) - - - b} (S1)w?(1,1) - -
bM(SM)]T , and N = @ x SM. Standard backpropagation
calculates terms like

5 SM .
8‘7 Z I'eq(Tn’)
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For the elements of the Jacobian matrix that are needed for
the Marquardt algorithm we need to calculate terms like

deg(m)
Ow*(i,7)

(25)

These terms can be calculated using the standard backpropa-
gation algorithm with one modification at the final layer

AM — _pM (M) (26)

Note that each column of the matrix in (26) i1s a sensitivity
vector which must be backpropagated through the network to
produce one row of the Jacobian.



1)

2)

3)

The Marquardt modification to the
backpropagation algorithm

Present all inputs to the network and compute the
corresponding network outputs (using (3) and (4)), and
errors (e, = t, — a,"). Compute the sum of squares of
errors over all inputs (V' (z)).

Compute the Jacobian matrix (using (26), (12), (10),
(11), and (20) ).

Solve (23) to obtain Az. (For the results shown in the
next section Cholesky factorization was used to solve
this equation.)



4)

)

Recompute the sum of squares of errors using z + Az.
If this new sum of squares is smaller than that computed
in step 1, then reduce i by 3, let x = x + Az, and go
back to step 1. If the sum of squares is not reduced, then
increase u by S and go back to step 3.

The algornthm i1s assumed to have converged when the
norm of the gradient ((18)) i1s less than some prede-
termined value, or when the sum of squares has been
reduced to some error goal.



For the first test problem a 1-15-1 network, with a hidden
layer of sigmoid nonlinearities and a linear output layer, was
trained to approximate the sinusoidal function

y=1/24 1/4sin(3nz)

using MBP, CGBP and VLBP. Fig. 2 displays the training
curves for the three methods. The training set consisted of 40
input/output pairs, where the input values were scattered 1n the
interval [—1,1]; and the network was trained until the sum of
squares of the errors was less than the error goal of 0.02. The
curves shown in Fig. 2 are an average over 5 different initial
weights. The initial weights are random, but are normalized
using the method of Nguyen and Widrow [16].



The fourth test problem is a four input-single output function
Y = 31n(27m:1)1:2,1:3£4 —(@itestwate) (27)

For this example a 4-50—1 network (301 parameters) 1s trained
to approximate (27), where the input values were scattered
in the interval [—1,1]; and the network was trained until the
sum of squares of the errors (over 400 input/output sets) was
less that the error goal of 0.5. Fig. 7 displays the average
learning curves (3 different initial weights), and line 4 of Table
I summarizes the average results. The CGBP algorithm takes
approximately four times as many flops as MBP (VLBP was
not applied to this problem because of excessive training time)



We noted that the difference between the performances of
MBP and CGBP became more pronounced as higher preci-
sion approximations were required. This effect is illustrated
in Fig. 9. In this example a 1-10-1 network is trained to
approximate the sine wave of (28). The sample size is held
constant at 100 points, but the mean square error goal is halved
in steps from 2 x 107* to 1.6 x 10~°. Fig. 9 displays the
number of flops required for convergence, as a function of the
error goal, for both MBP and CGBP. The curves represent an
average over 10 different initial conditions. With an error goal
of 2 x 10~* MBP is 16 times faster than CGBP. This ratio
increases as the error goal is reduced; when the error goal is
1.6 x 10°, MBP is 136 times faster than CGBP.



Many numerical optimization techniques have been success-
fully used to speed up convergence of the backpropagation
learning algorithm. This paper presented a standard nonlinear
least squares optimization algorithm, and showed how to
incorporate it into the backpropagation algorithm. The Mar-
quardt algorithm was tested on several function approximation
problems, and it was compared with the conjugate gradient
algorithm and with variable learning rate backpropagation. The
results indicate that the Marquardt algorithm 1s very ethicient
when training networks which have up to a few hundred
weights. Although the computational requirements are much
higher for each iteration of the Marquardt algorithm, this 1s
more than made up for by the increased efficiency. This 1s
especially true when high precision is required.



%% Train Neural Network Using [trainlm| Train Function

% This example shows how to train a neural network using the |[trainim]|
% train function.

%
% Here a neural network is trained to predict body fat percentages.

[x, t] = bodyfat_dataset;

net = feedforwardnet(10, 'trainlm’);
net = train(net, X, t);

Yy = net(x);

dim=4;

N=800;

x=rand(N,dim)*2-1;
y=sin(2*pi*x(:;,1)).*x(;,2).A2.%x(:,3).A3.%*Xx(;,4).AN . *exp(-sum(x,2));
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one can derive!8! the sinc function for this hexagonal lattice as:

sincy (X) = %(cos(mﬁl - X) sinc(&, - x) sinc(&3 - X)

+ cos(7m€, - x) sinc(&; - X) sinc(&; - x)
cos(m€; - x) sinc(§; - x) sinc(§, - x))
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https://matlab.mathworks.com/users/imwu@mail.ndhu.edu.tw/Published/
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demo_hagan.html
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where J(z) is the Jacobian matrix

der(z)  Ber(z) = de(z)
Ox, Oxo Oxn
Oez (i) dea(z) = Oe (a:)
Jz)=| o o2 O (20)
laeé () den(z) ., de y (z)
B:zl 3932 82:,,

and

S(z) = Ze (z)V2ei(z). (21)



Small steps and giant leaps:
Minimal Newton solvers for Deep Learning

Joao F. Henriques Sebastien Ehrhardt Samuel Albanie Andrea Vedaldi
Visual Geometry Group, University of Oxford

{joao,hyenal,albanie,vedaldi}®@robots.ox.ac.uk ]
click to source


https://arxiv.org/pdf/1805.08095.pdf
https://arxiv.org/pdf/1805.08095.pdf

Abstract

We propose a fast second-order method that can be used as a drop-in replacement
for current deep learning solvers. Compared to stochastic gradient descent (SGD),
it only requires two additional forward-mode automatic differentiation operations
per iteration, which has a computational cost comparable to two standard forward
passes and is easy to implement. Our method addresses long-standing issues
with current second-order solvers, which invert an approximate Hessian matrix
every iteration exactly or by conjugate-gradient methods, a procedure that is both
costly and sensitive to noise. Instead, we propose to keep a single estimate of the
gradient projected by the inverse Hessian matrix, and update it once per iteration.
This estimate has the same size and 1s similar to the momentum variable that
is commonly used in SGD. No estimate of the Hessian is maintained. We first
validate our method, called CURVEBALL, on small problems with known closed-
form solutions (noisy Rosenbrock function and degenerate 2-layer linear networks),
where current deep learning solvers seem to struggle. We then train several large
models on CIFAR and ImageNet, including ResNet and VGG-f networks, where we
demonstrate faster convergence with no hyperparameter tuning. Code 1s available.







