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Nonlinear Dimensionality
Reduction by
Locally Linear Embedding

Sam T. Roweis’ and Lawrence K. Saul?

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (/) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

'Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. ?AT&T Lab—Research, 180 Park Avenue,
Florham Park, N) 07932, USA.

E-mail: roweis@gatsby.uclac.uk (S.T.R); lsaul@research.
att.com (LK.S.)

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors X, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-

2

E(W) = z A;,"‘E,Wu/\;]

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights W summarize the contribution of the
Jjth data point to the ith reconstruction. To com-

phisticated usages of MDS such as Isomap (4),

pute the weights W, we minimize the cost

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (70) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

2323
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= To compute the N x N weight matrix W we want to
minimize the following cost function:

W) = Z

where W;; = 0 1t X, 1s not one of the K nearest neighbors of
X, and where the rows of W sum to 1

2

Xi_ZjW;jf(j

N

E L’ =1 >[.5 2 3...00 O\
i
J

... W sparse

Figure from Roweis and Saul, 2003 N j



Solving for one row of W

= Consider a particular data point X, = z with K nearest neighbors

X=n; and reconstruction weights W = w; that sum to one. Then,

2
€= Z_ijjnj

;wj(z—nj) sincezjwj =1
= Z,- > ww,C, where C, = (z-n,)-(z-n,),

the local covariance matrix

= Now using Lagrange multipliers to enforce the sum to one
constraint on the w;, the optimal weights are given by

Zk Jk
Z, m 1m

W



2., C
.G

= Inversion of local covariance matrix can be avoided by solving the
linear system of equations below and rescaling so the weights sum to

one.
Z AW = 1

= Note: If the covariance matrix is singular or nearly singular
regularization techniques must be used to solve this problem (this
typically arises i1f K > D).




Computing Embedded Vectors Y,

= Now that we have our weight matrix W, we would like to compute
each of our embedding vectors Y.. Minimize the following cost
functions for fixed weights W..

(Y) =2,

2

YI'_ZJ'I/KJ'YJ

= To make the problem well posed we add two constraints: (1)
centered at the origin and (2) unit covariance:

3%, =0 RS

l
s The first constraint removes the degree of freedom that Y be
translated by a constant amount. The second expresses an
assumption that reconstruction errors for different coordinates in the
embedding space should be measured on the same scale.



Solving for matrix Y

= Let Y be the matrix that contains Y, as each of 1t’s columns
2
O(Y) = Z|Y, - Z,WUY/

=\ -wy|
=Y'MY Where M = (I -W)" (I -W)isN x N

= Using Lagrange multipliers and setting the derivative to zero gives
(M -A)Y"'=0

= A here 1s the diagonal Lagrange multiplier matrix. This 1s an
eigenvalue problem where all eigenvectors of M are solutions. The
eigenvectors with the smallest eigenvalues minimize our cost. We
discard the first (1.e. smallest) eigenvector which corresponds to the
mean of Y to enforce constraint (1). The next d eigenvectors then give
the Y that minimizes our cost subject to the constraints (see K. Fan for
more information on the proof).



Laplacian Eigenmaps for Dimensionality Reduction and Data
Representation

Mikhail Belkin
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One of the central problems in machine learning and pattern recognition
is to develop appropriate representations for complex data. We consider
the problem of constructing a representation for data lying on a low-
dimensional manifold embedded in a high-dimensional space. Drawing
on the correspondence between the graph Laplacian, the Laplace Beltrami
operator on the manifold, and the connections to the heat equation, we
propose a geometrically motivated algorithm for representing the high-
dimensional data. The algorithm provides a computationally efficient ap-
proach to nonlinear dimensionality reduction that has locality-preserving
properties and a natural connection to clustering. Some potential appli-
cations and illustrative examples are discussed.



Laplacian Eigenmap

The graph Laplacian eigenmap algorithm [2] also incorporates directed or undirected graph
structure describing the local neighborhood relations between data points. As in Isomap,
these neighbor relations can be defined in terms of symmetric nearest neighbors or a small
distance criterion. The neighborhood relations are summarized by the adjacency matrix
W where W;; > 0 if the ith and jth data points are neighbors (¢ ~ j), assumed to be
symmetric, otherwise W;; = 0. The non-zero weights in W can be chosen from {0, 1}, or

according to W;; = e~lzi—w;l*/20° (a Gaussian kernel) where o is an adjustable parameter.
The generalized graph Laplacian L is defined in terms of the adjacency matrix W as:

di’ if i = ja
Lij = { - Wij, if 1 ~ j, (9)
0, otherwise,

where d; = > j~i Wij 1s the degree of the ith vertex. The normalized graph Laplacian L

is a symmetric matrix related to L by £ = D~ 2LD~ 2 with the diagonal matrix D;; =
dijd;. We assume that the graph is connected, so that L will have a single zero eigenvalue
associated with the uniform vector e.

Belkin and Niyogi [2] motivate the role of the graph Laplacian for dimensionality reduction
by showing that a plausible cost for a one-dimensional embedding of the nodes of the graph
1Y : V — R is given by:
1 .
YT = 5 (i — ;)" Wy (10)
i,J
which also shows that L is positive definite. Minimizing the quadratic form (10) involves

finding the eigenvectors with the smallest eigenvalues of either the graph Laplacian L or L,
depending upon the constraints used in the optimization.



Matlab toolbox

Matlab Toolbox for Dimensionality Reduction (v0.8.1 - March 2013)

The Matlab Toolbox for Dimensionality Reduction contains Matlab implementations of 34 techniques
for dimensionality reduction and metric learning. A large number of implementations was developed
from scratch, whereas other implementations are improved versions of software that was already
available on the Web. The implementations in the toolbox are conservative in their use of memory. The
toolbox is available for download here.

Currently, the Matlab Toolbox for Dimensionality Reduction contains the following techniques:
* Principal Component Analysis (PCA)

* Probabilistic PCA

 Factor Analysis (FA)

» Classical multidimensional scaling (MDS)
« Sammon mapping

* Linear Discriminant Analysis (LDA)

* Isomap

* Landmark Isomap

* Local Linear Embedding (LLE)

* Laplacian Eigenmaps

» Hessian LLE

 Local Tangent Space Alignment (LTSA)

e C.onfarmal Finenmane (exteancinn of | | F)


http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

