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Function Approximation Using Generalized Adalines

Jiann-Ming Wu, Zheng-Han Lin, and Pei-Hsun Hsu

Abstract—This paper proposes neural organization of general-
ized adalines (gadalines) for data driven function approximation.
By generalizing the threshold function of adalines, we achieve the
K -state transfer function of gadalines which responds a unitary
vector of K binary values to the projection of a predictor on a
receptive field. A generative component that uses the K -state ac-
tivation of a gadaline to trigger K posterior independent normal
variables is employed to emulate stochastic predictor-oriented
target generation. The fitness of a generative component to a set
of paired data mathematically translates to a mixed integer and
linear programming. Since consisting of continuous and discrete
variables, the mathematical framework is resolved by a hybrid of
the mean field annealing and gradient descent methods. Following
the leave-one-out learning strategy, the obtained learning method
is extended for optimizing multiple generative components. The
learning result leads to parameters of a deterministic gadaline net-
work for function approximation. Numerical simulations further
test the proposed learning method with paired data oriented from
a variety of target functions. The result shows that the proposed
learning method outperforms the MLP and RBF learning methods
for data driven function approximation.

Index Terms—Adalines, generative models, mean field an-
nealing, perceptron, postnonlinear projection, potts encoding,
supervised learning.

1. INTRODUCTION

DALINES (adaptive linear elements) of Widrow [22] have

been widely employed to develop neural networks [1],
[8], [13] for solving tasks of classification, noise cancellation,
system identification, and signal prediction [3], [17], [23], [10].
An adaline is composed of a receptive field and a threshold func-
tion. When stimulated by an input or a predictor, x € R, it
apples its transfer function to the projection of the input on a re-
ceptive field to form a bipolar output. A typical adaline network
is organized to sum up weighted activations of all its adalines,
and is mathematically expressed by a network function in terms
of a set of adaptable parameters, including the receptive fields
and posterior weights. As the design cost is measured by the
mean square error between the desired and estimated targets,
learning an adaline network subject to a set of paired data trans-
lates to an unconstrained optimization, which aims to minimize
the design cost by optimizing the network parameters. Since the
transfer function of an adaline is nonlinear, the network function
of adalines is beyond the scope spanned by linear regressions.
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This paper explores data driven function approximation [5]
based on generalized adalines. The novel neural organization
is devised by generalizing the threshold function to K -state
transfer function, which transforms its input to a K -state acti-
vation, represented by elements in Zx = {eff,... e&} where
ef is a unitary vector with the kth bit one and the others zero.
A K -state transfer function uses K built-in knots to partition its
domain to K nonoverlapping intervals so as to represent the ex-
clusive membership of its input to K nonoverlapping intervals
by a K -state activation. By replacing the threshold function of
an adaline with a K -state transfer function, we have the general-
ized adaline (gadaline) for constructing novel neural networks.

Internal representations based on K -state activations im-
pact on organizing and learning neural networks for data
driven function approximation. Relevant issues are explored
by addressing stochastic modeling of predictor-oriented target
generation using gadalines. Following the idea, the K -state
activation of a gadaline in response to a predictor is employed
to trigger one of K independent normal variables or generators
to produce an instance in approximating the desired target.
The obtained generative component is organized to perform
consecutive operations of projecting the predictor on a recep-
tive field, encoding the projection to a K -state activation, and
triggering a correspondent generator to produce an instance. In
response to a predictor, the output of a generative component
is mathematically expressed by the inner product of a K -state
activation and a vector of instances produced by K genera-
tors. By tracking these primitive operations, we express the
conditional probability density function (pdf) of the output of
a generative component to the predictor in terms of a set of
adaptable parameters, including the receptive field, the knot
vector, and the mean vector of K posterior generators. Fitting
a generative component to paired data induces a mixed integer
and linear programming. Since consisting of continuous and
discrete variables, the mathematical framework is resolved
by a hybrid of the mean field annealing and gradient descent
methods, which leads to an effective learning method for
optimizing a generative component subject to paired data.

The model of emulating predictor-oriented target generation
is extended to consist of multiple generative components,
where the model output is set to the sum of outputs of mul-
tiple generative components. In this work, learning multiple
generative components is decomposed to subtasks of simulta-
neously learning individual generative components following
the leave-one-out learning strategy. It is suggested to sequen-
tially optimize generative components one by one, and that
whenever an individual component is updated, the parameters
of the others are considered as constant. Following the strategy,
a generative component is optimized to have an output that
compensates for difference between the desired model output
and the sum of outputs of the remaining components.

1045-9227/$20.00 © 2006 IEEE



542

A deterministic gadaline network is organized to sum up
weighted activations of all its gadalines. Its output refers to the
sum of output expectations of multiple generative components,
as each of its posterior weight vectors corresponds to the mean
vector of generators of a generative component. Calculating
the output expectation of a generative component involves with
consecutive operations of projecting a predictor on a receptive
field, encoding the projection by a K-state transfer function
and multiplying the K -state activation to a posterior weight
vector. As the last two operations relates to realization of a
postnonlinear (PNL) function, the three consecutive operations
perform a cascaded composition of a linear projection and a
PNL function, which is termed as a PNL projection here. By
the terminology, a deterministic network of M gadalines is said
to sum up M PNL projections.

There exist several remarkable properties that could be used
to illustrate the difference between the gadaline network and
the approximating networks based on multilayer perceptrons
(MLP) and radial basis functions (RBF).

1) A gadaline network uses K -state activations as internal
representations. Since the threshold function of an ada-
line is a special case of the K -state transfer function, the
network function of multilayer adalines or perceptrons be-
longs to the function space spanned by gadaline networks.

2 ) Like a network of multilayer adalines or perceptrons, a
gadaline network has a set of receptive fields that form a
basis for linear transformation of dimensionality reduc-
tion, as the number of gadalines in a gadaline network
is less than the dimension of predictors. This makes the
gadaline network more suitable for function approxima-
tion with high dimensional predictors in comparisons with
the RBF network and Gauss RBF network [19].

3 ) Based on the K-state transfer function instead of the
threshold function, the PNL functions embedded within a
gadaline network are more flexible and general for func-
tion approximation when compared with those within the
MLP network.

4 ) The RBF network, e.g., the Gauss RBF network of Sanner
and Slotine [19], is apparently different from the MLP
network and the gadaline network proposed in this work.
a) Unlike the MLP network, the Gauss RBF network

sums up weighted radial basis functions instead of
projective basis functions. In contrast, the proposed
gadaline network performs a mapping that sums up
multiple postnonlinear projections instead of weighted
radial basis functions.

b) In the Gauss RBF network [19], the regular partition
to its input space R? involves with a Cartesian product
of d sets of equally spaced knots for determining cen-
ters of RBF functions. However, a gadaline network
only addresses on an irregular partition to the domain
of each of its K -state transfer functions; it does not
make use of a Cartesian product of d sets of regular or
irregular knots for internal representations.

¢) The parameters of a gadaline network are Md +
M(2K + 1) in number which linearly depends on
the input dimension d, state number K and gadaline
number M . But the parameter number in a Gauss RBF
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Fig. 1. Adaptive linear element (Adaline).

network is proportional to nonpolynomial K¢ that

increases intolerably for relatively large K and d.

This paper is organized as follows. Section II introduces
neural organization of gadalines based on the K -state transfer
function generalized from the threshold function of adalines.
In Section III, a generative component, which consists of a
gadaline as well as K posterior generators, is organized to
realize stochastic modeling of predictor-oriented target gen-
eration, and its learning to paired data is explored based on a
hybrid of mean field annealing and gradient descent methods.
In Section IV, the model for emulating predictor-oriented
target formation is extended to comprise multiple generative
components, and the relevant learning method is addressed
following the leave-one-out learning strategy. Section V gives
numerical studies on data driven function approximation by
gadaline networks in comparison with MLP networks and RBF
networks. The conclusions of this work are given in Section VI.

II. NEURAL ORGANIZATION OF GADALINES
A. Adalines

As shown in Fig. 1, an adaline is composed of a receptive field
w and a threshold function 6(-). When stimulated by a predictor,
x[t] = (21[t], ..., za[t])T, it projects the input on its receptive
field, w = (wy, ..., wq)T, to form an external field expressed
by

h[t] = whx[t] (1)

then employ the following threshold function to encode the ex-
ternal field:
1, if h[t] > 0
Ohlt]) = { —1, otherwise. 2)
To facilitate our presentations, we set z4[t] to one for all ¢ so
as to represent an arbitrary hyperplane in R4~ by (1) in the
following contexts.

A stochastic threshold function is defined to have a stochastic
output in response to an external field h. Let s denote a dis-
crete random variable corresponding to the output of a stochastic
threshold function. Since s depends on the external field, the
conditional pdf of s to h is assumed proportional to exp(Shs),
such as

Pr(s|h) x exp(Bhs)

where (3 is a positive parameter for modulating randomness.
Since the outcome of s is bipolar, by normalization, we have
the following conditional pdf:

exp(Bhs)
exp(Oh) + exp(—Oh)

Pr(s|h) =
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Fig. 2. Perceptron.

Fig. 3. Typical adaline network.

When h = h[t], the expectation of s is expressed as follows:

g(h[t]) = (s|h = h[t])
= Pr(s = 1|h = h[t]) — Pr(s = —1|h = h[t])
_ exp(Bh[t]) — exp(—LFh[t])
exp(Bhlt]) + exp(—phlt])
— tanh(Bhlt)). 3)

For sufficiently small 3, the expectation approaches to zero. In
the occasion, the output is generated with maximal random-
ness and its expectation tends to be independent of the external
field. On the other hand, for sufficiently large 3, the g function
asymptotically approaches the threshold function of (2), where
the output becomes a deterministic result of the external field.
When 3 = 1, the output expectation is identical to the output of
a perceptron [13], [18] shown in Fig. 2.

A typical adaline network synchronously transmits its signals
feed-forward the multilayer structure shown in Fig. 3. A net-
work of M adalines is mathematically expressed by

ZTm (w x t])

where 7, denotes the posterior weight, quantifying the con-
necting strength from an adaline to the output unit, and the net-
work parameter contains all the receptive fields and posterior
weights. By replacing the threshold function 6 in (4) with the
hypertangent function of (3), we have the network function for
multilayer perceptrons [13], [21], [20].

Subject to a set of paired data, {(x[t],y[t])};, function
approximation using an adaline network specifies a task of

(x[t]) = “)
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iposterior weight vector

Fig. 4. Weighted gadaline.

optimizing the network parameter via minimizing the following
design cost:

D({wum}, {rm}) = X ©)

ZHU

B. Gadalines

A gadaline is organized to consist of a receptive field and a
K -state function as shown in Fig. 4. A K -state function uses K
built-in knots, denoted by ¢ = (c1, ¢2, ..., cx)T, to partition its
domain into K nonoverlapping intervals, each denoted by

I [ + Ck—1 Ck + Crt1
k — ’

2 2
where cg = cpin and cx 41 = Cmax are two auxiliary knots for
boundary conditions, and ¢ < cp41 for all k. It follows:

ngllk = (Cmincmax]

and I N I} = @ for k # [. The K -state activation in response
to an external field A[t] is a unitary vector belonging the set
=k, representing the exclusive membership of A[t] to one of K
nonoverlapping intervals. A K -state transfer function with knot
vector c is expressed by

Or (h[t];c) = ek, ifhlt] € I. (6)

A gadaline employs adaptable knots to form an irregular parti-
tion to the domain of its K -state transfer function, equivalently
the range of the projection expressed by h[t] = wx[t]. It is no-
table that the external field A[t] is formed by projecting the input
on a receptive field instead of measuring distance between x|[t]
and a center as in a RBF network. Therefore, the gadaline net-
work presented in this work is different from the Gauss RBF
network in [19], where each dimension of the input space is
partitioned by a set of equally spaced knots and the Cartesian
product of d sets of knots is employed to determine centers of
K radial basis functions.

The threshold function of an adaline is a special case of the
K -state function. By setting K = 2andc = (—1 1), we have

6(h[H)) = <7 ba(h[t]: )
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which implies that an adaline network can be emulated using
gadalines.

A stochastic K -state transfer function is said to have a sto-
chastic output in response to an external field. Let § denote a
unitary random vector with possible outcomes belonging to Z .
Assume that the conditional pdf of § to an external field ~ obeys
the following expression:

Pr(6 = eX|h) o exp(—=08||h — ci|]?).
By normalization, the conditional pdf is rewritten as
exp(=flh — exl*)
Pr(6 =e|n) = .
0=l = S expl= gl = el

Let gx (h[t]; ¢, B) be a vector function whose output denotes the
expectation of § conditional to A = hlt]. Then

gx (h[t];c, B) =Y eff Pr (8 = ef|h = hlt])

exp(—p||h[t] — i1 |?)

é exp(—BlIhft] — ail]?)
exp(=BlIAlt] - exll*)

é exp(~BIIl] — ci][?)

geeey

T
exp(—f||h — cx|*)
K
l; exp(=fllh — all?)

which exactly coincides with the normalized response of a
Gaussian array in the field of computational neuroscience [7],
or the hidden function with one-dimensional inputs in [24].
Again, the external field to gx in a gadaline network is the
projection of x[t] on a receptive field instead of the distance
between x[t] and a center, as in the work [24].

A Gaussian array consists of K Gaussian units, each having
its own Gaussian-like tuning curve in response to the common
feature h

(7

ooy L 1A — cxl?

f (ha Ckvo'h) - \/%0'}1 €Xp ( 20_2 ) (8)
where the preference c, denotes the center of the Gaussian
window and U,ZL denotes the common width. As shown in Fig. 5,
a Gaussian array has a selective response to the common fea-
ture; the most responsive Gaussian unit possesses a preference
closest to the common feature. As the external field h to a
stochastic K -state function relates to the common feature for
a Gaussian array, the knot ¢, corresponds to the preference of
a Gaussian unit.

The [ parameter in function g of (7) plays the same role
as in function g of (3). For sufficiently large (3, g approaches
0k . The function g can be represented by gx with K = 2, ¢ =
(—11)T as follows:

g(h[t]) = c" ga(h[t]; c, B)

which implies that the transfer function of the perceptron can be
emulated by a special case of gx.
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neural activation

common feature

Fig. 5. Array of Gaussian tuning curves.

ht]=w"x[1] d[7]
M —»| | .

] P=8[[1]
=

Fig. 6. Generative component.

TABLE 1
FOUR CONSECUTIVE OPERATIONS WITHIN A GENERATIVE COMPONENT

operation transformation | parameter

1 | project a predictor on a receptive field | A[t] = wTx][t] w

2 | encode an external field d[t] = Ok (h[t];c) | c

3 | trigger K generators Mlt] ~ N(ry,02) | ¢

4 | select one instance ylt] = &[] m(t] -

III. STOCHASTIC MAPPING BY A GENERATIVE COMPONENT
A. A Generative Component

The generative component shown in Fig. 6 consists of a gada-
line as well as K posterior independent normal variables, where
the K -state activation of a gadaline is employed to select a
generator to produce an output instance. The consecutive op-
erations of a generative component for emulating predictor-ori-
ented target generation are shown in Table I. By tracking these
primitive operations, we are able to figure out the conditional
pdf of the output of a generative component to a predictor.

The first two operations in Table I deterministically trans-
late a predictor x[t] to the K-state activation 8[t], where 8[t]
is obtained by applying a K -state transfer function to the ex-
ternal field A[t]. The third operation uses K independent normal
variables, each with its own mean 7, to produce K instances,
collectively denoted by vector 7[t]. According to the activation
given by the second operation, the last operation selects one
of K instances as the response to x[t]. The selection is simply
expressed by

glt] = 611 nt] = Ox (w" x[t]; c) " m[t].

The above expression relates the output of a generative com-
ponent to a conditional mixture of K independent normal
variables, as the K -state activation 8[t] refers to a condition for
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selection of K independent normal variables. The expression
figures out the predictor-oriented target generation emulated
by a generative component, which facilitates organizing and
learning deterministic gadaline networks based on internal
representations using K -state activations.

Since ¥t] is an instance of a normal variable determined by
&[], in case of h[t] € Iy, equivalently §[t] = e[, the conditional
pdf of the component output to & = h[t] is the same as the pdf
of the selected normal variable. That is

q(ylh = h[t]) = f (yirx,0}) , if 8[t] = eff or hlt] € I, (9)

which takes the following algebraic form:

K
g(ylh = hlt]) = Ok (h[t];c)"ef f (yire,0;)  (10)
k=1

following the definition in (6).

B. Fitting and Learning

The parameter of a generative component consists of a re-
ceptive field, knot vector, mean vector, and variance, respec-
tively represented by w,c,r = (ryry---7rx)7, and U,Z. For
fixed w, x[t] is deterministically transformed to h[t] by the first
operation. The pair, (h[t], y[t]), given by the first operation con-
strains that the desired output of the last three operations in re-
sponse to h[t] should be as close as possible to y[t]. Therefore,
the fitness of the conditional pdf in (10) to (h[t], y[t]) for all ¢ is
measured by the following averaged log likelihood:

= ilogﬂq@[tnh — hft])
NZlog Z&[t]T

= —Zlog Z(Sk t]f Tk, )

NZZ‘S" log f (y

where 0[t] in the third line denotes the kth element of 8[t].
serves as a criterion for optimizing parameters of a generative
component.

Consider encoding h[t] to 8[t] by the second operation. Since
the K -state activation 4][t] is a deterministic result of A[t]

= {h[t]|8[t] = ey’ }

can be uniquely obtained by collecting all h[t] that are encoded
to the same activation, e.g., ef. Following the Gaussian-like
tuning curve assumption in (8), it is assumed that the pdf un-
derlying Hj, is a normal pdf with mean cj, and variance o . The
assumption leads to the following averaged log likelihood which
measures the fitness of a normal pdf to elements in Hy:

(y[t]; e, o))

(11)

)7, 0 y)

1
o= -log [ 7 (hlferof)

t:6[t]=e£(
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where NV}, denotes the size of Hy,. The weighting sum of [} over
all k£ becomes

= Z%z;
= %Z Z log f (hlt]

k t:8[t]=ef

= %ZZ&[t]TekK log f (h[t]; ck,a,%)
k t

= %ZZ&C[#] log f (R[t]; k. 07) .
t k

The best fitness of a generative component to paired data,
(x[t], y[t]) for all ¢, summarizes to minimize

i Cky 07)
(12)

E({d[t]},w,c,r,0)
= —%(Hl’)

1 T 2
= o7 Il ~ o

! ﬁ;;gékmnym P a3
subject to
Zék =1, for all ¢
6k[t] € {0,1}, forall ¢, k (14)

where the constant in (13) has been neglected and o denotes
collection of o}, and 0.

Since the mathematical framework contains both discrete and
continuous variables, the objective function F is not differen-
tiable with respect to the discrete variable 6[t]. It is resolved
by a hybrid of the mean field annealing (MFA) and gradient de-
scent methods.

Relating vector 4[t] to a Potts variable [15] automatically re-
leases the unitary constraint in (14). By doing this, we have a
Potts system, A = {8[t]};. Under the Boltzmann assumption
[15], it follows:

Pr(A) x exp(—fSE(A;w,c,r,0))

where ( denotes the inverse of a temperature like parameter, and
the notation F(A;w,c,r,o) means that the continuous vari-
ables, w, ¢, r, and ¢ in (13) are fixed. The optimal configuration
of such Potts system dominates the Boltzmann distribution as 3
increases asymptotically. It follows:

lim Pr(A*) =1

B—o0

where
E(A;w,c,r,0) = minE(A;w,c,1,0).

The MFA method tracks the mean configuration of a Potts
system under an annealing process, where the  parameter is
gradually increased from a sufficiently low value to large one.
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For each 3 value, the MFA method estimates the mean config-
uration by iteratively executing mean field equations toward a
stationary point. The mean configuration obtained at a 3 value
is set to be the initial mean configuration at the subsequent 3
value. The mean field equations can be derived from the fol-
lowing free energy [15]:

P(v,u) = E(v;w,c,r,0)

+ 35 ot %Zlog[z exp(Buxlt)]
t k t k

15)

where vy [t] denotes the mean of 6y [¢], ux[t] is an auxiliary vari-
able, and v and u, respectively, denote the collection of all vy[t]
and wu[t].

By setting

Ou(voa) _ forall ¢t and k

Ouy, ['t]

(v,u) _
{ 87jk[t] - 0

we have the following mean field equation which characterizes
the saddle point of the free energy (15):

OE(v;w,c,r,0)

wll = —5,
= o7 Wl = el
+ 2N1—U§||y[t1 —nl? (16)
welt) = 2Pl (17)

2 exp(=fulf])

It is suggested by a hybrid of the mean field annealing and
gradient descent methods [24] to seek for w,c,r, and o
by minimizing the quantity F(v,w,c,r,o) directly, where
E(v,w,c,r,0) is obtained by replacing each discrete d[t] in
(13) with continuous vy [t] for each (3 value. By setting

OE(v,w,c,r,0) __
Bck -
OE(v,w,c,r,0) __
a’l"k -
OE(v,w,c,r,0) _ 0
Aoy, -
OE(v,w,c,r,0) __
day, -

we have the following rules for determining elements of c,r,
and o, respectively:

;uk [t]At]

“T TS (1%)
> uk[t]y(t]

Tp = e (19)

Xt:vk [t]
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1/2
Th = ( %ZZék[ﬂllex[t] - ck||2) (20)
1 t ok U
oy = (ﬁzzék[t]”y[t] —Tk||2> :
t k

2n

The two variances U,ZL and 013 are also treated as adaptive param-
eters instead of predefined constants. Setting

OE(v,c,r,w,0)
— T T 2 =0
ow

leads to

ZZUk [t)(wrx[t] — c)x[t] = 0

k

which takes the following vector form:
Aw =D
with elements given by
Aji =Y ajltailt],
t
b= ck <quk[t]xj[t]> .
k t

Let At denote the pseudo inverse of A. In general, the linear
system can be solved by

w=ATb. (22)

Learning a generative component subject to a set of paired
data is summarized by the following procedure:

1) inputall (x[t], y[t]). Set 3 to a sufficiently low value. Ran-
domly initialize w as a unitary vector and elements in c
and r uniformly distributed within [—1 1];

2) rescale all y[t] within [—1 1]; rescale all x;[t] within
[—1 1], separately for each ¢; set o), = 0, = 1;

3) calculate h[t] = wlx[t] for all ¢;

4) determine all vg[t] by (16)-(17);

5) determine {ci}, {rr},on, and o, by (18)—(21);

6) determine w by (22) and normalize w to a unitary vector;

7) increase [ by an annealing schedule. If the halting condi-
tion holds, end the procedure; otherwise, go to step 3).

As the annealing process gradually increases the 5 parameter
from a sufficiently low value to large one, each vg[t] changes
from near 1/K to a binary value. Under the annealing process,
the stability of vector v[t] measured by Y v?[t] changes from

k

near (1/K) to one for each ¢. Therefore, the averaged stability
for all v[¢] approaches to one for a sufficiently large (. In the
occasion, the procedure exits at step 7).



WU et al.: FUNCTION APPROXIMATION USING GENERALIZED ADALINES

x[7]

Fig. 7. Generative model with M generative components.

IV. STOCHASTIC MAPPING BY MULTIPLE
GENERATIVE COMPONENTS

A. A Model With Multiple Generative Components

As shown in Fig. 7, stochastic modeling of predictor-oriented
target generation is extended to consist of M generative com-
ponents. The model output 3[¢] is expressed by

3t = 3 Gl

where m indexes M generative components and 7,,[t] denotes
the output of the mth generative component in response to
x[t]. The receptive field, knot vector, mean vector, and vari-
ances within the mth generative component are represented by
Wi, €, T, and o (m) and o (1n), respectively.

Let W be a matrix with M rows of wl m = 1
Then

M.

PIIRIIY

h[t] = Wx[f]

denotes a vector of external fields caused by x[¢], with elements
represented by

ho[t] = Wk x][t].
The conditional pdf of (10) is rewritten as follows:

qm(ym|hm = hm[t])
= Z O (hm[t]; cm) el f (ym; rmk,oz(m))

= f(Ym; Or (hml[t]; cm)Trmv ‘75 (m)) (23)
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where m runs from 1 to M. Since there is only one active bit in
a K -state activation, the second line translates to that the condi-
tional pdf of y,,, to h,, = hp[t] is @ normal pdf, whose mean is
further expressed by 0z (A [t]; €m) T Ty in the third line.
Since the model output is the sum of outputs of M generative
components, in case of h = h[t], equivalently h,, = h,,[t] for
all m, it coincides with the sum of M normal variables, exactly a
normal variable with mean > 0z (A [t]; ¢m )T T, and variance

>_02(m). The argument leads to the following conditional pdf:

p(ylh=hft]) = f (y; > 0k (hat]; cm> T, Y _oa(m))
" " (24

which represents the stochastic mapping carried out by a model
consisting of M generative components.

B. A Deterministic Gadaline Network

A typical gadaline network is organized to sum up output ex-
pectations of multiple generative components, and is mathemat-
ically expressed by

Fre v (x[1]) = (y|h = Wx{t])

= T
= bk (whx[thien) rm (25)
m=1

where the subindex indicates that the network contains M
gadalines and uses K-state transfer functions. The network
function sums up M weighted activations, each being the inner
product of the K -state activation and posterior weight vector
of a gadaline.
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Since the threshold function of adalines can be realized by
a two-state function, an adaline network can be mathematically
expressed by a gadaline network function in (4). By setting K =
2,cp, = (=1 1)T, and r,, = (=7p, )7, we have

M
= Zrmﬂ (wﬁx)
m=1

M
= Z (—TmTm)0s (Wl x; (—1
m=1

M
= > b (Whxicn)
m=1
which is identical to F5 ps(x[t]) of (4).
Further replacing 0 in Fx ar with gi of (7) leads to the
following network function:

n")

Groa(x Zrmqk wWIx[t]: Cm, ) (26)
where the (3,,, parameter can be replaced with the ratio between
a global 3 and the variance o (m) for each gadaline. Both the
network functions G ar and F ps share the same network
parameters. By using the gx function, Gk s always behaves

smoother than Fig jr.

C. Learning by Leave-One-Out Approximation

Based on the leave-one-out learning strategy [11], we present
the learning method for a model consisting of multiple genera-
tive components in this subsection.

Since the model output is the sum of outputs of M genera-
tive components, the desired output y,, [t] of the mth generative
component in response to x[t] is set to compensate for the error
between the desired model output y[¢] and the sum of outputs of
the other M — 1 generative components. That is

ymlt] = ylt] = Y Gult]
n#m
where the summation term measured the model output as if the
mth generative component offered no contribution to the model
output. The pairs (x[t], ym[t]) for all ¢ form an intermediate
training set for optimizing the mth generative component based
on the updating rules (16)—(22).
Under the annealing process, the desired output of the mth
generative component in response to x[t] can be expressed in
terms of mean activations, such as

ymlt] = y[t] — Zvn [t r,
n#m
where the mean activation is the result tracked by the MFA
method.
The learning method for M generative components is step-
wise described as follows:

27

(28)

1) input all (x[t], y[t]); set 3 to a sufficiently low value; ini-
tialize W at random and elements in each c,, and r,,
equally spaced within [—1 1];

2) rescale all y[t] within [—1 1]; rescale all z;[t] within
[—11], separately for each 4; set o5(m) = o,(m) = 1
for all m;

3) initialize elements of all v,,[¢] near 1/ K at random;
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4) for each m, execute the following steps:
a) calculate y,,[t] by (28) for all ¢;
b) fit the mth generative component to all (x[t], ym[t]) as
follows:
i) calculate h,,[t] = wl x][t] for all ¢;
i) determine v,,[t] by (16)—(17) for all ¢;
iii) determine c,,,r.,,0n(m), and o,(m) by
(18)—(21);
iv) determine w,, by (22) and normalize w,, to a
unitary vector;
5) increase (3 by an annealing schedule. If the halting condi-
tion holds, end the procedure; otherwise, go to step 4).
Step 4) sequentially updates multiple generative components.
Whenever a generative component is updated, the parameters of
the other M — 1 generative components are considered as con-
stant. For the currently updated generative component, the de-
sired output in response to x[¢] is calculated at step 4a) to com-
pensate for the difference between the desired model output y[¢]
and the sum of outputs of the other M — 1 generative compo-
nents. By step 4a), all (x[t], y,[t]) initiate a stand-alone sub-
task for fitting the mth generative component, constraining op-
timization of parameters {v,[t]}, ¢, on(m), oy(m),rpy,, and
W, by rules (16)—(22) at step 4b).
The above learning method possesses several remarkable fea-
tures relative to existing MLP and RBF learning methods.

1) The mathematical framework shown in (13)—(14) formu-
lates a novel mixed integer and linear programming for
fitting the conditional pdf to paired data.

2) Since the energy function £ in (13), consisting of con-
tinuous and discrete variables, is not differentiable with
respect to discrete variables, the mathematical framework
is resolved by a hybrid of the mean field annealing and
gradient descent methods.

3) Like previous works [15], [24], the annealing process can
help evolution of network parameters escaping from the
trap of tremendous local minima within the energy func-
tion F.

4) Under the annealing process, the calculation of matrix
inversion (22) takes part in iterative update of network
parameters by interactive dynamics of (16)—(22), whereas
similar matrix inversion that has been employed to deter-
mine posterior weights in a typical RBF learning method
invokes no iterative updates under the mean-field-an-
nealing process.

5) The mean field (16)—(17) employs global (3 and local vari-
ance o7, () and o7 (m) for modulating determination of
the mean configuration of a Potts system, where the local
variance for each m is dynamically updated under the an-
nealing process.

6) Learning multiple generative components is decomposed
to subtasks of simultaneously learning individual gen-
erative components following the leave-one-out learning
strategy.

D. Approximating a Variety of Target Functions

Learning multiple generative components subject to paired
data achieves network parameters for functions F'x s and
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TABLE 1I TABLE III
VARIETY OF TARGET FUNCTIONS TARGET FUNCTIONS
Target function Description Category Target function Description
One-dimensional functions such as tanh, One-dimensional function
y(2) = ¢(z) (d=1,M=1) wn(z) =v(z) +n
cos, In, sin, exp and polynomial functions with uniform noise n € [—0.5,0.5]
y(z)=a'z A linear projection (d>1,M=1) y2(2z) = 0.3z + 20 — 0.523 + 224 — 0.725 Single linear projection
y(z) = p(a’z) A post-nonlinear projection (d>1,M=1) y3(z) = tanh(0.321 + 2o — 0.523 + 224 — 0.7z5) Single post-nonlinear projection
M . L
y(z) = 3 bup,,(alz) | A weighting sum of post-nonlinear projections | (d>1,M>1) ya(z) = tanh(0.821 + 0.22;) + tanh(0.3z; — 0.9z) | Sum of two PNL projections
m=1
M - UYs = te 22 2 2 2= " jections
y(z) = T en(alz) A product of post-nonlinear projections (d>1,M>1) ys(z) = tanh(0.82; + 0.225 + 023 + 024 + 0z3) Sum of two PNL projections
m=1

Gk, of (25)—(26). The two network functions share the same
network parameters but use different transfer functions, Ok
and g . With a proper (3 value, G ks behaves smoother than
Fg ar, where the suitable 8 value for the Gk s function can
be determined by minimizing the design cost based on the
determined network parameters.

Table II lists three categories of target functions, respectively
represented by tuples of (d = 1, M = 1),(d > 1,M = 1),
and (d > 1,M > 1), with discrimination according to the
dimension d of predictors and the number M of PNL functions
embedded within the target function.

The first type of the target function in Table II consists of a
variety of differentiable one-dimensional nonlinear functions.
Each of them can be approximated by the network functions,
Fk 1(z) and Gk 1(2), derived from learning a single generative
component with d = 1 and input z € R. The network function
Fk 1(%) is a spline function that sums up K piece-wise constant
functions, and G 1(z) represents a parametric smooth func-
tion beyond the scope of traditional quadratic or cubic spline
functions.

In Table II, the target function with d > 1 and M = 1 is
expressed by a linear or postnonlinear projection from R? to
R, which can be approximated by the network function cor-
responding to a generative component with receptive field w
belonging R?. The target function with d > 1 and M > 1
in Table II is more complicated; each takes form of a sum or
product of multiple postnonlinear projections. The former can
be directly approximated by Fx ar or Gk through learning
multiple generative components, but the latter, a product expres-
sion, needs proper processes for its approximation by learning
multiple generative components.

Since taking log to a product of positive postnonlinear pro-
jections induces an expression that sums up multiple postnon-
linear projections, it is suggested to approximate In y(z) by the
network function Fx ar or G ar, then y(z) based on the ob-
tained network functions. The log function must have a positive
domain. Taking this into account, one can represent the target
function by the following combination of two rectified parts:

y(z) = Rec(y(z)) — Rec(—y(z))

where the rectifying function is defined by

(29)

Rec(z) = z, ifz>0

=0, otherwise.

+tanh(0.3z; — 0.922 + 023 + 0z4 + 025) with ineffective attributes

ye(z) = 0.5z% — 0.922 Quadratic function

yr(z) = exp(—?— - %) cos(kz1 + ¢) Gabor function

1

Now both In Rec(y(z)) and In Rec(—y(z)) take form of sum-
ming up multiple postnonlinear projections, and can be approx-
imated by learning multiple generative components separately
subject to training sets of

ST = {(x[t), ny[t])[y[] > 0}
S = {(x[t], In(=y[t)ly[t] < 0}
Let G"I}’ a(z) and G ,(z) denote two approximating func-

tions respectively obtained by learning to ST and S~ . The final
approximation to the original target function y(z) is given by

(30)

y(2) = exp(G 1/(2)) — exp(Gg (2)) 31)

where the two exponential terms in the right-hand side, respec-
tively, approximate Rec(y(z)) and Rec(—y(z)) in (29).

V. NUMERICAL SIMULATIONS

Numerical simulations of learning multiple generative com-
ponents are explored in this section. The proposed learning
method is employed to approximate a variety of target func-
tions in Table III in the first subsection and is compared with
the relevant MLP and RBF learning methods in the second
subsection.

A. Performance Evaluation

The proposed learning method is implemented by the
MATLAB language on Pentium III personal computers. For
each target function in Table III, the learning method is em-
ployed to estimate the network parameter subject to a training
set; then, the obtained network function G s is verified by a
testing set. Within the training and testing sets correspondent
to each target function y; in Table III, all x[t] form a uniform
sample from a bounded domain of y; and each pair (x[t], y[t])
is obtained by setting y[t] to y;(x[t]).

For each target function, the design and generalization costs
of an approximating function are measured by the mean square
errors over the correspondent training and testing sets. Table IV
shows summary statistics of the mean square error and exe-
cution time derived from twenty executions of the proposed
learning method for each target function.
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Fig. 8. Approximating functions G211 for the noisy logarithm, exponential, cosine, hypertangent, and polynomial functions.

In the first example, the proposed learning method is tested
with one-dimensional noisy target functions given at the first
row of Table III. The training and testing sets for each target
function respectively contain 400 and 200 pairs of data. Each
plot in Fig. 8 shows the noisy paired data oriented from specific
nonlinearity and the approximating function G2, obtained by
learning a generative component with K = 21, where the hori-
zontal and vertical coordinates respectively measure the one-di-
mensional predictor and the function value. The mean squared
error for each nonlinearity is shown at the first five rows of
Table IV. The proposed learning method well deals with noisy
targets for these examples. The derived approximating function
effectively captures nonlinearity underlying each training set as
shown in each plot of Fig. 8.

In the remaining experiments of this subsection, the training
and testing sets for each target function respectively contain
1000 and 500 pairs of data. The target functions y»(z) and y3(z)
in Table III are separately approximated by a network func-
tion G'»;,; with multidimensional predictors, since they take
form of single linear and postnonlinear projections, respectively.
Figs. 9(a) and 9(b) show the PNL functions embedded within the
obtained approximating functions for y2(z) and ys(z), where
the horizontal coordinate measures the projection on a recep-
tive field and the vertical coordinate measures the output of the
PNL function calculated by gz (h;c)Tr. The PNL function in
Fig. 9(a) tends to be linear, and that in Fig. 9(b) is likely to be
a hypertangent function in shape. In the approximating func-
tion, the only receptive field listed below each horizontal coor-
dinate can be verified for its linear dependence on the projective
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Fig. 9. Component functions for linear and nonlinear projection function.

vector in y2(z) or y3(z). Since y»(z) and y3(z) are not noisy,
as shown in Table IV, the testing cost reduces to a scale below
102, In Table IV, the standard deviation below 10~ has been
neglected.

The target function y4(z) in Table III sums up two PNL pro-
jections, so it is approximated by a two-gadaline network. The
two plots in Fig. 10(a) respectively show y4(z) and the obtained
approximating function G'21 2. The two PNL functions as well
as their correspondent receptive fields in the obtained G 2
function are shown in Fig. 10(b). It is shown that the proposed
learning method succeeds in extracting the two PNL projections
of y4(z).

0.5 1 1.5 2
T
h=wz
0.5 1 1.5 2
T
h=w'z

The input to function y5(z) contains three ineffective re-
dundant attributes which are not causes to the function output.
Fig. 11 shows the obtained G212 function, in which the two
receptive fields

wy = [0.974,0.228,0.014,0.015, —0.006]
{wz = [0.313,—-0.949,0.008,0.001,0.032] }
have relatively small weights for the ineffective attributes,
23,24, and zs. The receptive fields themselves carry with
informations on extracting causes of the target function. The
mean squared error in approximating the above target functions
has ignorable variation among twenty executions, which shows
high reliability of the proposed learning method.
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Fig. 10. Approximating function G2, » and the component functions for the summation of two nonlinear projection functions.

The PNL functions in a trained G 5s function are adaptable
to the training set. As shown in Fig. 12(b), the two PNL func-
tions embedded within the trained G2 » function for ys(z) tend
to be quadratic ones as in ys(z).

The Gabor function y7(z) is thought of as a product of two
postnonlinear projections. As argued in Section IV-D, it can be
expressed in terms of the following rectified parts:

y7 (2) = Rec(yz(2))

y7 (2) = Rec(—yr(2)).
The intermediate target functions, In 4 (z) and In y7 (z), can be
approximated by the trained approximating functions separately
subject to two training sets, St and S, specified in (30). Let
G, 5(z) and G3; 5(z) denote the two approximating functions

respectively derived from ST and S~. As shown in (31), the
final approximating function is expressed as a combination of
exp(G3; 5(2)) and exp(Gy, 5(z)). Fig. 13(a) shows the target
function y7(z) and the final approximating function for y;(z).
The two rectified functions, ¥ (z) and y7 (z), and their approx-
imating functions are respectively shown in the left and right
columns of Fig. 13(b). The mean square error from twenty exe-
cutions listed in the Table IV shows that the Gabor function can
is well approximated.

B. Comparisons With Relevant Learning Methods

The proposed learning method is compared with the relevant
learning methods for MLP [9] and RBF [14], [16] networks in
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Fig. 11.

performance and computation efficiency. The used MATLAB
program for the RBF learning method was provided by the first
author of the paper [16], in which the pseudocode description
for the used program appeared on page 310. The MATLAB pro-
grams for the MLP leaning methods [4], [13], [12] were pro-
vided by the author of the work [13]. The training and testing
sets used in the next example respectively contain 1000 and 500
pairs of data.

The sinusoidal grating function shown in Fig. 14 serves as
the target function for the first example. Since it coincides with
the postsinusoid projection, it is approximated by a gadaline
network with M = 1. The proposed learning method is ex-

Approximating function G2 > and the component functions for the summation of two nonlinear projection functions with three dummy variables.

pected to extract the most appropriate orientation as well as the
sinusoidal nonlinearity from the training set. Table V lists the
mean square error and CPU time in seconds summarized from
twenty executions of each of the relevant learning methods. The
testing error of the MLP learning methods and the RBF learning
method using 60 hidden units reduces to 0.0037 and 0.0085, re-
spectively, and the proposed learning method achieves a G 1
function whose testing error reduces to 0.0004. The improve-
ment shows that the most appropriate orientation as well as si-
nusoidal nonlinearity have been captured and represented by
the only receptive field and PNL function in the obtained gada-
line network. The averaged CPU time for each of the relevant
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Fig. 12. Approximating function G»1 » and the component functions for the quadratic function.

learning methods is listed in the last column of Table V. It is no-
table that the proposed learning method significantly improves
the MLP learning methods in both performance and computa-
tional efficiency, and that the RBF learning method has larger
variation relative to the proposed learning method in perfor-
mance. In the first column of Table V, numerics in parentheses
refer to the number of hidden units used in an MLP or RBF
network.

The next example revisits the target function ys(z) in
Table VI for testing the proposed learning method and the
RBF method. The training and testing sets here respectively
contain 1000 and 500 pairs of data, where the predictor in

each pair contains five elements, each belonging to the interval
[—5,5]. The mean square error is listed in Table VI, which
shows improvement by the proposed learning method. Since
the RBF network performs a mapping based on the Euclidean
distance, its learning method cannot brook interference caused
by ineffective redundant attributes of the predictor.

The last example tests the relevant learning methods with the
following target function:

yg(z) = sin(0.4z1 + 0.12z9 4+ 023 + 024 + 025 + 026 + 027)
+ sin(0.152z7 — 0.45z9 + 0z3 + 024 + 0z5 + 0z + 027)
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Fig. 13.

a sum of two postsinusoid projections with multiple ineffective
redundant attributes. The training and testing sets respectively
contain 400 and 200 pairs of data. Table VII lists summary sta-
tistics of the design and generalization costs from twenty execu-
tions of each of the relevant learning methods. The data shows
that the proposed learning method significantly improves the
MLP and RBF learning methods in reducing both the training
and testing errors.

It is notable that the Levenberg—Marquardt (LM) learning
method has resulted in the overfitting situation as reflected by
a satisfied training error against an extremely high testing error
shown in row MLP-LM(60) of Table VII. The overfitting is pri-

-1 -2 3
exp(G;, 12(2))

Approximating function for the Gabor function and its two rectified functions.

marily caused by the inadequacy of sigmoid-like functions for
representing a postsinusoid projection. When the hidden units in
an MLP network increased to 60, even though the LM learning
method had significantly reduced the training error, it failed to
approximate the sum of two postsinusoid projections in terms
of 60 post-hypertangent projections as reflected by an intoler-
able generalization cost. An MLP network with overestimated
hidden units failed to represent the function structure of ys(z).
The overfitting situation has been effectively improved by the
use of K -state transfer functions, which made the PNL func-
tions embedded within a gadaline network more adaptable and
general for representing the sinusoid nonlinearity and others.
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TABLE V

PERFORMANCE OF THE RELEVANT LEARNING METHODS FOR
APPROXIMATING THE SINUSOIDAL GRATING FUNCTION

TABLE IV

PERFORMANCE OF APPROXIMATING A VARIETY OF TARGET FUNCTIONS
Target function | Mean+std(training) | Meantstd(testing) | CPU time in seconds
cos(z) | 3.06e-2+0 3.24e-2+0 2.3+0.0
exp(z) | 8.04e-240 9.89e-2+0 6.1£0.1
In(z) | 8.52¢-240 9.07¢-240 6.840.1
24—z | 9.66e-24+0 9.13e-2+0 5.540.1
tanh(z) | 8.27e-24+0 9.38e-2+0 7.1+0.1
y2(2) | 8.60e-440 9.50e-4+0 13.140.1
y3(z) | 1.90e-4+4.1e-5 1.80e-444.7¢-5 15.840.7
ya(z) | 9.50e-4+0 8.70e-4£0 55.7+0.3
y5(z) | 1.30e-3+0 1.30e-3£0 48.3+0.2
ys(z) | 2.40e-4+1.3e-5 3.00e-4+1.5e-5 16.740.5
yr(z) | 1.90e-4+1.7e-5 1.70e-441.6e-5 21.0+0.4

VI. CONCLUSION

Organizing and learning gadaline networks based on K -state
activations have been extensively explored based on stochastic
modeling of predictor-oriented target generation using genera-
tive components.

The adaline of Widrow is a special case of a gadaline and
the network function of adalines is within the function space
spanned by gadaline networks. The universal approximation
property that has been verified for adaline or perceptron net-
works is inherent in gadaline networks. In comparison with the
adaline or MLP network, the PNL functions embedded within
a gadaline network are more flexible and general for function
approximation.

The fitness of a generative component to given paired data
is characterized by a mixed integer and linear programming for
data driven function approximation, which is resolved by a hy-
brid of the mean field annealing and gradient descent methods.
Following the leave-one-out learning strategy, learning multiple

Meanzstd(training) | Mean=std(testing) | CPU time
MLP-Batch(25) 4.70e-1+0 4.73e-1+0 21.2+0.1
MLP-Batch(60) 4.68¢-1£0 4.71e-1£0 33.0+0.1
MLP-Recursive(25) | 2.51e-1+0 2.59e-1+0 155.3+0.5
MLP-Recursive(60) | 3.60e-34+0 3.70e-3+0 186.0+0.5
RBF(25) 7.98e-242.02e-2 8.68e-242.15e-2 0.6+0.1
RBF(60) 7.90e-317.00¢c-4 8.50e-3+1.10e-3 1.4£0.1
Gosn 6.60e-3+0 6.70e-3+0 10.1£1.7
Geo,1 5.40e-4+0 6.10e-4+0 16.510.5
TABLE VI
PERFORMANCE OF THE TWO METHODS FOR APPROXIMATING FUNCTION /5 ()
Mean=std(training) | Meantstd(testing) | CPU time
RBF(25) | 5.63e-24.50e-3 6.37e-245.4e-3 0.5+0.1
RBF(60) | 3.07e-24+1.20e-3 4.36e-2+1.5e-3 1.6+0.1
G 1.30e-3+0 1.30e-3+0 48.3+0.2
Gas 2 7.80e-4+0 8.80e-4+0 64.3+8.9
Geo,z 8.10e-5+0 9.70e-5+0 102.9+0.4
TABLE VII

PERFORMANCE OF THE RELEVANT LEARNING METHODS FOR
APPROXIMATING ys(z)

Mean Square Error | training set testing set Times

MLP-Batch(25) 4.54e-1+0 9.12e-1+0 13.4+0.1
MLP-Batch(60) 2.04e-110 8.79¢-140 20.9+0.1
MLP-Recursive(25) | 1.51e-1+0 9.08e-140 65.3+0.3
MLP-Recursive(60) | 1.17e-1+0 2.29+0 86.61+0.4
MLP-LM(25) 1.42e-1+0 1.00+0 9.61+0.1
MLP-LM(60) 4.00e-61+0 6.714+0 44.340.2
RBF(25) 4.72e-145.88e-2 | 6.01e-146.98e-2 | 0.3+0.2
RBF(60) 1.45e-1+£1.26e-2 | 4.09e-1+2.33e-2 | 0.740.1
Gasa 2.10e-31+0 2.40e-310 15.3+0.9
Geo,1 5.00e-410 1.00e-3+0 40.7£1.2

generative components is realized by decomposition to subtasks
of learning individual generative components.

Numerical simulations that test the proposed learning method
with a variety of target functions have shown very encouraging
results. The proposed learning method improves the MLP
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and RBF learning methods in effectiveness and reliability for
approximating the target functions shown in Section V-B, and
its efficiency in computation is compatible to that of the MLP
learning methods as shown in Tables V and VII. By learning
multiple generative components, the obtained approximating
function Gk pr succeeds in extracting the PNL functions
embedded within the target function and is able to detect inef-
fective redundant attributes within the predictor. The proposed
learning method has demonstrated its potential approximation
to the target function which takes form of a sum or product of
multiple postnonlinear projections.

Like multilayer adalines or perceptrons, the receptive fields
within a gadaline network form a basis for a linear transforma-
tion. As the number of gadalines in a gadaline network is less
than the dimension of predictors, the linear transformation maps
from R? to a reduced space RM . After the dimensionality—re-
duction transformation, M PNL functions embedded within a
gadaline network nonlinearly translate an image in R to an
approximating value to the desired target. Since the number of
PNL functions in a gadaline network equals to the number of
receptive fields, the network parameter number expressed by
Md + M(2K + 1) linearly depends on the input dimension
d, state number K, and gadaline number M. Therefore, for
relatively large d and K, the gadaline network still possesses
economic internal representations. The situation is totally dif-
ferent in a Gauss network [19]. Since using a Cartesian product
of d sets of regular knots for internal representations of cen-
ters of radial basis functions, the parameter number in a Gauss
network is proportional to K%, which increases intolerably for
relatively large K and d. This is the reason why the gadaline
network is more suitable for function approximation with high
dimensional predictors in comparisons with the RBF network
and Gauss network.

It has been shown that the proposed learning method is
effective for detecting ineffective redundant attributes of the
predictor via seeking for essential receptive fields as well as
PNL functions. That indicates applicability of the proposed
learning method to the task of supervised dimensionality—re-
duction. The predictor for ys(z) contains eight attributes,
however, only two of them cause the function output. Nu-
merical simulations show well approximation to ys(z) by
learning a gadaline network with M = 2, of which internal
representations of receptive fields and PNL functions structure
well such a target function, avoiding the interference caused
by ineffective redundant attributes. The proposed learning
method has been shown to significantly improve the MLP and
RBF learning methods in approximating ys(z). Supervised
dimensionality-reduction by the proposed learning method
will be further explored in the near future with applications to
classification, signal prediction, and system identification for
medical signals [1], [3], [8], [13], [17], [23].
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