Independent component analysis

PottsICA Extraction of fetal ECGs

ScienceDirect - Neural Networks : Independent component analysis based on marginal density estimation using weighted Parzen Windows (2008)

ScienceDirect - Neurocomputing : Blind separation of fetal electrocardiograms by annealed expectation maximization (2008)

IEEE Trans on Neural Networks: Independent component analysis using Potts models (2001)

ICA for Mixed Images

- Load and display mixed faces
- Apply JadeICA for independent component analysis of mixed faces
- Display attained independent components

ICA for Mixed Images

- Load and display mixed faces
- Apply FastICA for independent component analysis of mixed faces
- Display attained independent components

Outlines

- 1. Blind source separation
- 2. Independent component analysis
- 3. Previous works, JadeICA, fastICA
- 4. ICA using Potts models, PottsICA
- 5. A comparison on the three methods
- 6. Conclusions and future works

Blind Source Separation (BSS)

NDHU 2009

POISS Cory PottsICA

IEEE Trans. On Neural Networks(2001)

#Observations -

Recovered

sources

PottsICA

Voice-music separation:

#BSS for voice-music separation

Blind Source separation : Fetal ECGs

Linear Mixtures

$$x = As$$

Unknown mixing structure: A is an $N \times M$ scalar matrix

Unkown statistically independent sources: $S = [s_1, ..., s_M]'$

Observations:
$$\boldsymbol{x} = [x_1, \ldots, x_N]'$$

Goal of ICA

Recover independent sources by a de-mixing process

$$\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{A}\mathbf{s}.$$

such that

$$p(\mathbf{y}) = \prod_{i=1}^{M} p_i(y_i)$$

 $p_i(y_i)$ denotes the marginal distribution

The joint distribution p is as close as possible to the product of marginal distributions

NDHU 2009

The Unmixing Problem

$$Y = U X = U(AS)$$

- We would like to undo the mixing ...
- Signals were independent -- Mut Info was zero.
- Search for U which minimizes Mut Info.

$$\begin{array}{ll} \text{minimize} & MI(y_i, y_j) \ \forall i, j \\ U \\ & MI([UX]_i, [UX]_j) \end{array}$$

De-mixing

$$\mathbf{W} = \mathbf{A}^{-1}$$

or

$\mathbf{W} = \boldsymbol{\Lambda} \mathbf{P} \mathbf{A}^{-1}$

where \mathbf{P} is a permutation matrix and $\mathbf{\Lambda}$ is a nonsingular diagonal matrix for arbitrary scaling.

Kullback-Leibler Divergence

$$D(\mathbf{y}) = \int p(\mathbf{y}) \log \frac{p(\mathbf{y})}{\prod_{i=1}^{N} p_i(y_i)} d\mathbf{y}.$$
$$D(\mathbf{y}) = -H(\mathbf{y}) + \sum_{i=1}^{N} H_i(y_i)$$
$$H(\mathbf{y}) = -\int p(\mathbf{y}) \log p(\mathbf{y}) d\mathbf{y} \qquad H_i(y_i) = -\int p_i(y_i) \log p_i(y_i) dy_i$$
Itelligent Numerical Computations, AM

NDHU 2009

Joint entropy

Since $\mathbf{y} = \mathbf{W}\mathbf{x}$, $H(\mathbf{y}) = H(\mathbf{x}) + \log |\det(\mathbf{W})|$ Then N $D(\mathbf{y}) = -H(\mathbf{x}) - \log |\det(\mathbf{W})| + \sum H_i(y_i).$ i=1

Normalized K-bin histograms

- Let $\{y[t]\}_{t=1}^T$ denote a sample from a random variable y
- Let {h_k}^K_{k=1} denote a set of knots for partition of the range of y into nonoverlapping intervals

Non-overlapping intervals

$$B_k = \left\{ y \,|\, k = \arg\min_l |y - h_l|, y \in R \right\}$$

Potts variable

$$\xi[t] = (\xi_1[t], \dots, \xi_K[t])',$$

 $\sum_{k=1}^{K} \xi_k[t] = 1,$
 $\xi_k[t] \in \{0, 1\}$ for all k .

Normalized Histograms

Math Programming

Potts encoding of membership vectors by $\xi[t]$ is equivalently to minimize

$$E(\{\boldsymbol{\xi}[t]\}_{t}) = \frac{1}{2} \sum_{t=1}^{T} \sum_{k=1}^{K} \xi_{k}[t] |y[t] - h_{k}|^{2}.$$

$$\boldsymbol{\xi}[t] = (\xi_{1}[t], \dots, \xi_{K}[t])',$$

Subject to
$$\sum_{k=1}^{K} \xi_{k}[t] = 1,$$

$$\boldsymbol{\xi}_{k}[t] \in \{0, 1\} \text{ for all } k.$$

Potts encoding of Multiple components

For encoding marginal entropies of multiple components, we extend membership vectors with a subindex

 $\boldsymbol{\xi}_{i}[t] = (\xi_{i1}[t], \dots, \xi_{iK}[t])'$

Math programming of Multiple components

$S(\mathbf{y}) = S(\mathbf{x}) + \log |\det(\mathbf{W})|,$

where the first term is negligible.

Marginal entropies

$$S(y_i) \approx -\sum_{k=1}^{K} \Pr(y_i \in B_k) \ln \Pr(y_i \in B_k)$$
$$= -\frac{1}{T} \sum_{k=1}^{K} \sum_{t=1}^{T} \xi_{ik}[t] \ln\left(\sum_{t=1}^{T} \xi_{ik}[t]\right) + \ln T,$$
for approximating the marginal entropy of y_i .

$$H_i(y_i) = -\int p_i(y_i) \log p_i(y_i) dy_i$$
$$\approx -\sum_{k=1}^K p_{ik} \log p_{ik}.$$

Math programming for minimization of KL divergence

$$L(\xi, \mathbf{W}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \xi_{ik}[t] |\mathbf{w}_{i}\mathbf{x}[t] - h_{k}|^{2}$$
$$- c \log |\det(\mathbf{W})|$$
$$- \frac{c}{T} \sum_{k=1}^{K} \sum_{t=1}^{T} \xi_{ik}[t] \ln \left(\sum_{t=1}^{T} \xi_{ik}[t] \right)$$
$$\sum_{k=1}^{K} \xi_{ik}[t] = 1 \quad \text{for all } i, t,$$
$$\xi_{ik}[t] \in \{0, 1\} \quad \text{for all } i, k, t.$$

Hopfiel-like energy function

Hopfield-like energy function:

$$L(\xi, \mathbf{W}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \xi_{ik}[t] |\mathbf{w}_{i}\mathbf{x}[t] - h_{k}|^{2}$$
$$- c \log |\det(\mathbf{W})|$$
$$- \frac{c}{T} \sum_{k=1}^{K} \sum_{t=1}^{T} \xi_{ik}[t] \ln \left(\sum_{t=1}^{T} \xi_{ik}[t]\right)$$

Mean field equations

$$u_{itk} = -\frac{1}{2} \|\mathbf{W}_{i}\mathbf{x}(t) - h_{ik}\|^{2} + \frac{C_{2}}{T} \log\left(\frac{1}{T}\sum_{t=1}^{T} v_{itk}\right)$$
$$v_{itk} = \frac{\exp\left(\beta u_{itk}\right)}{\sum_{l} \exp\left(\beta u_{itl}\right)}$$

Boltzmann assumption

Boltzmann distribution

$$\Pr(\boldsymbol{\delta}) \propto \exp(-\beta L(\boldsymbol{\delta}))$$

Use mean field equations to find the mean configuration at each β

$$\lim_{\beta \to \infty} \Pr\left(\boldsymbol{\delta}^*\right) = 1$$

$$L(\pmb{\delta}^*) = \min_{\pmb{\delta}} L(\pmb{\delta})$$

denotes the inverse of a temperature-like parameter

Annealed EM

- 1. Input all $\mathbf{x}[t]$, set \mathbf{W} as an identity matrix, c = 1, $\beta = \frac{1}{2.5}$ and $\eta = 0.015$, and initialize $v_{ik}[t]$ near 1/K randomly and β as a sufficiently low value.
- 2. Iteratively update all $u_{ik}[t]$ and $v_{ik}[t]$ using Eqs. (17) and (18) to a stationary point.
- 3. Iteratively update W using Eqs. (13) and (19).
- 4. If the value of $\sum_{i,k,t} v_{ik}[t]^2$ is less than a predetermined threshold, set β to $\beta/0.995$ and go to step 2, otherwise halt.

Flow chart

NDHU 2009

Numerical simulations

Artificial problem I by Amari et al.

Independent sources

The normalized histogram of the five sources

Numerical simulations

The mixed signals of the five sources using a randomly generated mixing matrix

Performance evaluations by Amari

$$E = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} \frac{|q_{ij}|}{\max_{k} |q_{ik}|} - 1 \right) + \sum_{j=1}^{N} \left(\sum_{i=1}^{N} \frac{|q_{ij}|}{\max_{k} |q_{kj}|} - 1 \right)$$
(28)

where q_{ij} denotes the joint element of the *i*th row and the *j*th column of the product of the mixing matrix and the demixing matrix.

Performance evaluations

THE PERFORMANCE OF THE THREE ALGORITHMS FOR THE TESTS

mean E	PottsICA	JadeICA	FastICA	cpu-time(PottsICA)
example $1(N=5)$	0.28	0.60	0.75	$314 \mathrm{secs}$
example $2(N=6)$	1.28	3.02	1.97	400 secs
example $3(N=8)$	4.40	15.30	11.07	566 secs

Recovered signals by PottsICA

The recovered signals by the PottsICA from the mixed signals

Performance

TABLE II Test Performance of the Three Algorithms for Different Problem Sizes with All Sources in Uniform Distributions

mean E	PottsICA	JadeICA	FastICA	cpu-time (secs) of PottsICA
N=2	0.13	0.17	0.18	153
N=3	0.38	0.48	0.64	224
N=4	0.84	0.91	1.13	317
N=5	1.48	1.66	2.45	386
N=6	2.00	2.73	3.77	460
N=7	3.19	3.64	5.50	556
N=8	4.88	6.54	7.35	619
N=9	6.41	13.20	11.26	716
N=10	7.98	33.85	16.91	782
N=11	9.64	77.96	24.04	861
N=12	13.37	115.26	38.82	950
N=13	15.74	141.02	40.64	1040
N=14	18.00	166.29	55.52	1123
N=15	21.82	183.66	76.51	1199
N=16	25.81	208.93	*	1322
N=17	29.24	233.51	*	1363
N=18	34.67	260.71	*	1437
N=19	39.53	292.50	*	1525
N=20	44.63	323.31	*	1614

Intelligen

NDHU 2009

Performance

TABLE III Test Performance of the Three Algorithms for Different Problem Sizes with One Gaussian Source and N-1 Uniform Sources

	mean E	PottsICA	JadeICA	FastICA	cpu-time(secs) of PottsICA
	N=2	0.31	0.27	0.31	145
	N=3	0.77	0.73	0.92	216
	N=4	1.35	1.37	1.38	298
	N=5	2.21	2.69	2.66	381
	N=6	3.21	5.16	4.26	439
	N=7	3.95	5.09	5.68	531
	N=8	5.48	17.96	8.87	605
	N=9	7.28	19.75	15.20	688
	N=10	9.02	48.03	20.67	763
	N=11	11.18	74.30	22.30	853
	N=12	14.27	110.57	36.10	949
	N=13	17.49	133.84	55.21	1024
	N=14	20.72	155.62	72.72	1107
	N=15	23.86	173.66	76.04	1188
	N=16	27.38	201.70	*	1309
	N=17	32.80	235.56	*	1364
	N=18	36.86	255.16	*	1422
	N=19	44.28	285.16	*	1534
Intelligent Nume	N=20	47.52	313.09	*	1625

Conclusions

- Potts encoding is successfully applied to develop novel approaches for ICA
- PottsICA directly deals with minimization of KL divergence for ICA
- Marginal pdfs are well approximated by normalized histograms

Conclusions

- PottsICA behaves better than JadeICA and FastICA
- PottsICA is potential for real world applications

Blind source separation – fetal ECG

fECG extraction- JadelCA

- Process MECG by JadeICA
- Display recovered independent components

fECG extraction- FastICA

- Process MECG by FastICA
- Display recovered independent components

ICs extracted by JadelCA

Weak target sources

NDHU 2009

Weak source

- Replace the 7th component of JadeICA with a five-state source to attain eight sources
- Multiply the mixing matrix of JadeICA to eight sources to form artificially created MECGs

Artificially created eight sources

Artificially created MECG

Ics extracted by JadeICA

Apply JadeICA to process artificially Created MECGs

Ics extracted by PottsICA

Exercise

Process MECG by JadeICA

Form an artificially created MECGs

Replace the 7th component of JadeICA with a five-state source to form a set of eight sources

Multiply the mixing matrix estimated by JadeICA to the eight sources

Apply JadeICA to process artificially created MECGs

wavread

```
[s1,fs]=wavread('source1.wav');
plot(1:1:length(s1),s1);
wavplay(s1,fs);
```

Sounds

NDHU 2009

Linear mixtures

Linear mixtures of sound recordings

- Input sound recordings
- Create a random matrix
- Form linear mixtures of sound recordings
- Play and plot linear mixtures of sound recordings

ICA of linear mixtures of sound recordings

 Apply JadeICA to process linear mixtures of sound recordings

Convolutive mixing

Convolutive mixtures

$$\begin{bmatrix} x_{1}[t] \\ x_{2}[t] \end{bmatrix} = \begin{bmatrix} a_{11}(0) & a_{12}(0) \\ a_{21}(0) & a_{22}(0) \end{bmatrix} \begin{bmatrix} s_{1}[t] \\ s_{2}[t] \end{bmatrix} + \begin{bmatrix} a_{11}(1) & a_{12}(1) \\ a_{21}(1) & a_{22}(1) \end{bmatrix} \begin{bmatrix} s_{1}[t-1] \\ s_{2}[t-1] \end{bmatrix} + \cdots + \begin{bmatrix} a_{11}(\tau) & a_{12}(\tau) \\ a_{21}(\tau) & a_{22}(\tau) \end{bmatrix} \begin{bmatrix} s_{1}[t-\tau] \\ s_{2}[t-\tau] \end{bmatrix}$$

recordings

- Input sound recordings
- Create random matrices
- Form convolutive mixtures of sound recording
- Play and plot mixed sounds

sound recordings

 Apply JadeICA to process convolutive mixtures of sound recordings

ICA of mixed-sound recordings

- Read convolutive mixtures of sound recordings
- Apply JadeICA for blind source separation of convolutive mixtures of sound recordings
- Plot and play independent components