Natural Discriminant Analysis Using Interactive Potts Models

Neural computation 2002, April

Jiann-Ming Wu

Jmwu@mail.ndhu.edu.tw

Department of Applied Mathematics, National Donghwa University

Outlines

- Discriminate analysis of paired data
- Generative models of predictors
- PottsNDA
 - Discriminate function
 - Learning network
- A mixed integer and linear programming
- Free energy approaches
 - Free energy function
 - Interactive Dynamics
- Incremental learning
- Numerical simulations and discussion
- Conclusions

Paired data

$D = \{(\mathbf{x}_i, q_i)\}_i$ $\mathbf{x}_i \in R^d \text{ denotes a predictor}$ $q_i \text{ represents the category of } \mathbf{x}_i$

A generative model for predictors

Prior probabilities

$$\{\pi_m\}_m$$

Unitary condition

$$\sum_{m} \pi_{m} = 1$$

Generation of predictors:

According to prior probabilities, each time one of joined sub-models is selected and triggered to generate a predictor

Sub-models

- Multivariate Gaussians
- pdf

$$p_k(x) = \frac{1}{(2\pi)^{\frac{d}{2}} \sqrt{|A^{-1}|}} \exp\left(-\frac{1}{2}(x - y_k)'A(x - y_k)\right)$$

A common weight matrix, A

Gaussian mixtures

- Gaussian mixture assumption: given predictors are sampled from Gaussian mixtures
- pdf

 $p(\mathbf{x}) = \sum p_k(\mathbf{x})$

Examples: Gaussian Mixtures

Linear local means

Examples: Gaussian mixture

- Four local means
- Non-overlapping distributions
- A common weight matrix for rotation

Examples: Gaussian mixtures

Spiral data

Unitary vectors for category representations

Example: two categories

$q_i \in \{(1,0), (0,1)\}$

Unitary vectors for category representations

Example: three categories

$q_i \in \{(1,0,0), (0,1,0), (0,0,1)\}$

Discriminate analysis of paired data

Voronoi partition

Manhalanobis distance

$$\|\mathbf{x} - \mathbf{y}\|_{A} = \sqrt{(\mathbf{x} - \mathbf{y})^{T} A(\mathbf{x} - \mathbf{y})}$$

Voronoi Partition defined by A and all \mathbf{y}_i in θ

$$\Omega_{\mathbf{k}} = \{ x \mid \mathbf{k} = \arg \min_{j} \| \mathbf{x} - \mathbf{y}_{j} \|_{A} \}$$

Voronoi partition

Partition based on Mahalanobis distances

Voronoi partition

A=I

Partition based on Euclidean distances

Memberships

Unitary vectors for membership representations

 \mathbf{e}_k denotes a unitary vector with the kth bit one and others zeros $\Xi_K = {\mathbf{e}_k}_{k=1}^K$ denotes collection of possible memberships

Exclusive Memberships

 $\boldsymbol{\delta}_i$ denotes the exclusive membership of \mathbf{x}_i to regions defined by $\boldsymbol{\theta}$

$$\boldsymbol{\delta}_i = F(\mathbf{x}_i; \boldsymbol{\theta}) = \mathbf{e}_k \text{ if } \mathbf{x}_i \in \boldsymbol{\Omega}_k$$

Category labels

- Let each region possess its own category label, denoted by ξ_m
- ξ denotes collection of all category labels

Discriminating function

- θ and ξ define a discriminate function

$$g(\mathbf{x}_{i}; \boldsymbol{\theta}, \boldsymbol{\xi})$$

$$= \sum_{k} \boldsymbol{\xi}_{k} F(\mathbf{x}_{i}; \boldsymbol{\theta}) \mathbf{e}_{k}$$

$$= \sum_{k} \boldsymbol{\xi}_{k} \boldsymbol{\delta}_{i}^{T} \mathbf{e}_{k}$$

$$= \sum_{k} \sum_{m} \boldsymbol{\xi}_{k} \boldsymbol{\delta}_{im}$$

Discriminate function

$$g(x) = \xi_{k^*},$$

$$k^* = \arg\min_k \|x - y_k\|_A,$$

Discriminate functions

Overlapping memberships

$$G_k^A(x) = \frac{\exp(-\beta(x-y_k)'A(x-y_k))}{\sum_j \exp(-\beta(x-y_j)'A(x-y_j))},$$

Learning Network of PottsDA

Fitting Gaussian mixtures

 Translate fitting a generative model to tasks of fitting joined individual submodels

$$l = \sum_{k} l_{k}$$

Fitting a submodel

Maximal likelihood

$$l_{k} = \log \prod_{x_{i} \in \Omega_{k}} p_{k}(x_{i})$$
$$= \sum_{x_{i} \in \Omega_{k}} \log p_{k}(x_{i})$$
$$= \sum_{i} \delta_{ik} \log p_{k}(x_{i})$$

Fitting criteria

$$l = \sum_{i} \sum_{k} \delta_{ik} \log p_k(x_i)$$

= $-\frac{1}{2} \sum_{i} \sum_{k} \delta_{ik} (x_i - y_k)' A(x_i - y_k)$
 $-\frac{N}{2} \log \det(A^{-1}) - \frac{Nd}{2} \log(2\pi),$

• Setting det(A⁻¹) = - det(A) and neglecting the last constant term

$$E_1 = \frac{1}{2} \sum_{i} \sum_{k} \delta_{ik} (x_i - y_k)' A(x_i - y_k) - \frac{N}{2} \log \det(A)$$

• Maximizing the function *I* is equivalent to minimizing the function E_1

Discriminating errors

MINP: A mixed integer nonlinear programming

Objectives

$$E(\delta, \xi, y, A) = E_1 + cE_2$$

= $\frac{1}{2} \sum_i \sum_k \delta_{ik} (x_i - y_k)' A(x_i - y_k)$
 $- \frac{N}{2} \log \det(A) + \frac{c}{2} \sum_i ||q_i - \Lambda \delta_i||^2$

Constraints

$$\delta_{ik} \in \{0, 1\}, \text{ for all } i, k$$

$$\sum_{k} \delta_{ik} = 1, \text{ for all } i$$

$$\xi_{km} \in \{0, 1\}, \text{ for all } k, m$$

$$\sum_{m} \delta_{km} = 1, \text{ for all } k,$$

MINP

- Mixed integer nonlinear programming
- Minimize E subject to unitary constraints of Potts variables

A mixed energy function for MINP

$$E(\delta, \xi, y, A) = E_1 + cE_2$$

= $\frac{1}{2} \sum_i \sum_k \delta_{ik} (x_i - y_k)' A(x_i - y_k)$
 $- \frac{N}{2} \log \det(A) + \frac{c}{2} \sum_i ||q_i - \Lambda \delta_i||^2,$

Boltzmann assumption

• The system obeys the Boltzmann distribution

 $\Pr(\delta, \xi) \propto \exp(-\beta E(\delta, \xi)).$

Physical annealing

- Physical annealing schedules the parameter *K* gradually from sufficiently low to high values
- At sufficiently large *K* value, the Boltzmann distribution will be dominated by optimal configurations.

$$\lim_{\beta \to \infty} \Pr(\delta^*, \xi^*) = 1,$$

where

$$E(\delta^*, \xi^*) = \min_{\delta, \xi} E(\delta, \xi)$$

A free energy

- A free energy measures the sum of the mean energy and the negative system entropy
- Independent assumption
 - All individuals are statistically independent
 - The mean energy can be approximated by substituting individual means to E
 - The system entropy equals the sum of individual entropies

A tractable free energy

$$\Psi(y, A, \langle \delta \rangle, \langle \xi \rangle, v, u) = E(y, A, \langle \delta \rangle, \langle \xi \rangle) + \sum_{i} \sum_{k} \langle \delta_{ik} \rangle v_{ik} + \sum_{k} \sum_{m} \langle \xi_{km} \rangle u_{km} - \frac{1}{\beta} \sum_{i} \ln\left(\sum_{k} \exp(\beta v_{ik})\right) - \frac{1}{\beta} \sum_{k} \ln\left(\sum_{m} \exp(\beta u_{km})\right)$$

where $\langle N \rangle$, $\langle Y \rangle$, u, and v denote $\{N_i\}$, $\{Y_k\}$, $\{u_{km}\}$, and $\{v_{ik}\}$, respectively, and u_i and v_k are auxiliary vectors.

Multiple sets of interactive dynamics

- A tractable free energy function is differentiable with respect to all of its dependent variables
- Setting zeros to derivatives of a tractable free energy function leads to multiple sets of interactive dynamics

A hybrid of mean field annealing and gradient descent methods

- The gradient descent method can not be directly applied to binary variables
- MFE for binary variables and GD for continuous variables
- $\{\delta_i\}$ and $\{\xi_k\}$ are associated with Potts neural variables or Potts spins in statistical mechanism

Mean field equations

$$\frac{\partial \Psi}{\partial \langle \delta_i \rangle} = 0, \quad \frac{\partial \Psi}{\partial v_i} = 0, \text{ for all } i$$
$$\frac{\partial \Psi}{\partial \langle \xi_k \rangle} = 0, \quad \frac{\partial \Psi}{\partial u_k} = 0, \text{ for all } k$$

Two sets of Mean field equations

$$\begin{aligned} v_i &= -\frac{\partial E(y, A, \langle \delta \rangle, \langle \xi \rangle)}{\partial \langle \delta_i \rangle} \\ &= -\frac{1}{2} (x_i - y_k)' A(x_i - y_k) - c\Lambda'(q_i - \Lambda \delta_i) \\ \langle \delta_i \rangle &= \left[\frac{\exp(\beta v_{i1})}{\sum_h \exp(\beta v_{ih})}, \dots, \frac{\exp(\beta v_{iK})}{\sum_h \exp(\beta v_{ih})} \right]' \\ u_k &= -\frac{\partial E(y, A, \langle \delta \rangle, \langle \xi \rangle)}{\partial \langle \xi_k \rangle} \\ &= c \sum_i \langle \delta_{ik} \rangle (q_i - \Lambda \langle \delta_i \rangle) \\ \langle \xi_k \rangle &= \left[\frac{\exp(\beta u_{k1})}{\sum_m \exp(\beta u_{km})}, \dots, \frac{\exp(\beta u_{kM})}{\sum_m \exp(\beta u_{km})} \right]' \end{aligned}$$

Updating rule of weight matrix A

$$\Delta A_{mn} \propto -\frac{\partial \Psi}{\partial A_{mn}}$$

$$= -\frac{\partial E}{\partial A_{mn}}$$

$$= -\frac{1}{2} \sum_{i,m} \sum_{k} \langle \delta_{ik} \rangle (x_{im} - y_{km})(x_{in} - y_{kn}) + \frac{N}{2} [(A')^{-1}]_{mn}$$

When all $\triangle A_{mn} = 0$, we have

$$A = (W^{-1})',$$

$$V_{mn} = \frac{1}{N} \sum_{i} \sum_{k} \langle \delta_{ik} \rangle (x_{im} - y_{km}) (x_{in} - y_{kn}).$$

Update rule of local means

Gradient

•

$$\Delta y_k \propto -\frac{\partial \Psi}{\partial y_k}$$
$$= \frac{1}{2} \sum_i \langle \delta_{ik} \rangle (A + A') (x_i - y_k)$$

• Again when Ay = 0, we have

$$y_k = \frac{\sum_i \langle \delta_{ik} \rangle \, x_i}{\sum_i \langle \delta_{ik} \rangle}$$

2276

Annealing

An annealing process for learning PottsDA

- 1. Set a sufficiently low β value, each kernel y_k near the mean of all predictors and each $\langle \delta_{ik} \rangle$ near $\frac{1}{K}$ and $\langle \xi_{km} \rangle$ near $\frac{1}{M}$.
- 2. Iteratively update all $\langle \delta_{ik} \rangle$ and v_{ik} by equations 3.4 and 3.5, respectively, to a stationary point.
- Iteratively update each (ξ_{km}) and u_{km} by equations 3.6 and 3.7, respectively, to a stationary point.
- 4. Update each y_i by equation 3.12.
- 5. Update A by equations 3.9 and 3.10.
- 6. If $\sum_{ik} \langle \delta_{ik} \rangle^2$ and $\sum_{km} \langle \xi_{km} \rangle^2$ are larger than a prior threshold, then halt; otherwise increase β by an annealing schedule and go to step 2.

Numerical Simulations

- Performance evaluation:
 - 1. PottsDA
 - 2. Radial basis function(RBF) method
 - 3. Support vector machine(SVM) method (Vapnik 1995)

Artificial data: Example 1

Table 1 The performance of the three methods for the first example

	$\operatorname{RBF}(4)$	$\operatorname{RBF}(8)$	$\operatorname{RBF}(12)$	$\operatorname{RBF}(24)$	SVM	PottsDA(4)
Training	14.1%	12.0%	8.6%	3.9%	13.2%	0%
Testing	13.0%	12.1%	8.3%	4.5%	14.3%	0%

Artificial data: Example 2

Table 2 Performance of the three methods for the second example

	$\operatorname{RBF}(4)$	$\operatorname{RBF}(8)$	$\operatorname{RBF}(12)$	$\operatorname{RBF}(24)$	SVM	PottsDA(4)
Training	45.3%	31.2%	22.6%	10.9%	3.2%	0.2%
Test	44%	31.1%	24.6%	13.9%	5.9%	0%

Artificial data: Example 3

PottsDA:

Two columns of the inverse of A

40 local means,

and category labels

Table 3 Performance of the three methods for the third example

	RBF(40)	$\operatorname{RBF}(50)$	$\operatorname{RBF}(60)$	$\operatorname{RBF}(80)$	SVM	PottsDA(40)	
Training	14.6%	10.4%	7.8%	3.3%	45.5%	0.8%	
Test	15.7%	12.3%	9.5%	4.1%	45.6%	0.4%	-

Incremental learning for Example 3

The horizontal coordinate is the time index for varying the beta value

Discriminate analysis of Wisconsin Breast Cancer Database

- •Walberg and Mangasarian 1990
- 699 instances,

each containing 9 features for predicting one of benign and malignant categories.

- 458 instances in the benign category
 - 241 instances in the malignant category

Wisconsin Breast Cancer Database

Simulation Results

- Walberg and Mangasarian 1990
 error rate for testing > 6%
- 683 instances of the database by Malini Lamego(2001)

	PottsDA(42)	Neural Net with algebraic loops
Train(483)	1.4%	2.3%
$\operatorname{Test}(200)$	1%	4.5%

For the 219-case test set, the RBF method with 80 kernels and the SVM method result in error rates, 4.17% and 4.63%, for testing.

Conclusions

- PottsDA
 - A discriminant network
 - An annealed learning approach
- Translate discriminate analysis to minimization of fitting criteria and approximating errors
- PottsDA learning is realized by a hybrid of mean field annealing and gradient descent methods
- Incremental learning for PottsDA is effective for determining the optimal model size.
- Encouraging learning results of PottsDA discriminate analysis.

