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Paired data

D = {(Xia%)}i

x, ER‘ denotes a predictor

g, represents the category of X,




A generative model for predictors




Prior probabillities

T S

Unitary condition

EJ‘Em=1

Generation of predictors:

According to prior probabilities, each time one of joined
sub-models is selected and triggered to generate a predicto




Sub-models

- Multivariate Gaussians
- pdf

1
Pr(x) = exp (—-(x — ) Ax —yk))
A

- A common weight matrix, A




Gaussian mixtures

- Gaussian mixture assumption: given

predictors are sampled from Gaussian
mixtures

- pdf

p(x) = Z P (X)




Examples: Gaussian Mixtures

- Linear local means
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Examples: Gaussian mixture

- Four local means
- Non-overlapping distributions
- A common weight matrix for rotation




Examples: Gaussian mixtures

- Spiral data
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Unitary vectors for category representations

- Example: two categories

q, & 1(1,0),(0,1)§




Unitary vectors for category representations

- Example: three categories

q. €1(1,0,0),(0,1,0),(0,0,1)}




Discriminate analysis of paired data
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Training set= {(xi.qi). 1 =i = N,»; ¢ R' g, € S}.

PottsDA(O)

q=g(xX; 6)

— Testing set

Correct rate



Voronol partition

Manhalanobis distance

Ix-y|, =(x-y)" 4(x-y)

Voronoi Partition defined by A and all y, in O

Q= {x|k=arg minlx -yl }




Voronoi partition

Partition based on Mahalanobis distances




Voronoi partition

Partition based on Euclidean distances
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Memberships

Unitary vectors for membership representations

e, denotes a unitary vector with the kth bit one and others zeros

=. ={e, ¥ denotes collection of possible memberships
K k $ k=1 p p




Exclusive Memberships

0, denotes the exclusive membership of x,

to regions defined by 0
0, =F(x;0)=e¢, 1fx EQ,




Category labels

- Let each region possess its own category
label, denoted by g,

" & denotes collection of all category labels




Discriminating function

- 0 and ¢ define a discriminate function

g(x,;0,8)

= Z&kF(xi;G)ek

= Z g e,
- Z ; SO




Discriminate function

g (x) = &,

k* = argmin || x — kaA ;

k




Discriminate functions

Overlapping memberships

exp(—B(x — yp)' A(x — yi))

GA x) — .
i ) > exp(—Bx — ) Alx — ;)

g2(x;,0,c) gﬁ(xi;eﬂg)

-3 Yed, T -3 Ta6iw)




Learning Network of PottsDA

Potts model dynamics

for <4> for A

inter-connection data networks
(A, {y} ,<0>, <B>)




Fitting Gaussian mixtures

- Translate fitting a generative model to
tasks of fitting joined individual sub-
models

I=sz




Fitting a submodel

- Maximal likelihood

Iy = log ]—[ Pr(x;).

x,-er

= Zlogpk(xi)
x,E82,
= 26ik log p, (x;)




Fitting criteria

| = Z Z&'klogpk(«\’i)
k

1

1
. O Sl —yi) Alxi — i)
T

N Nd
—= log det(A™") — —- log(27),

Setting det(A-') = - det(A) and neglecting the last constant term

]. N\ N\ N
E1 = > > D Sulxi —y) Alxi —yp) — > log det(A)
A

- Maximizing the function / is equivalent to minimizing




Discriminating errors




MINP: A mixed integer nonlinear programming

- Objectives

E@G.&.y.A) = E1 + cE2

= % Z Z5ik(xi — Yi) A(xi — )
ik

N C 2
— = logdet(4) + Eani—A&-ll ,




Constraints

Sir € {0, 1}, foralli k
Y 6k = 1. forall i
k

Eem € {0, 1}, forall k, m
Y 8 = 1. forall k.

mn




- Mixed integer nonlinear programming

- Minimize E subject to unitary constraints
of Potts variables




A mixed energy function for MINP

E@.E.y. A) = E1 + cEp
1
= > DY Silxi — k) Axi — vi)
Tk

N c 2
— = logdet(4) + EZ 19i — ASilI".




Boltzmann assumption

* The system obeys the Boltzmann distribution

Pr(3. &) o exp(—BE(G.£)).




Physical annealing

* Physical annealing schedules the parameter K
gradually from sufficiently low to high values

* At sufficiently large K value, the Boltzmann
distribution will be dominated by optimal
configurations.

lim Pr(5*. &¥) = 1.
p—oo

where

E@™.&7) = Ig}ignf(59€)




A free energy

* A free energy measures the sum of the mean energy and
the negative system entropy
 Independent assumption
 All individuals are statistically independent
* The mean energy can be approximated by substituting
individual means to E
* The system entropy equals the sum of individual
entropies




A tractable free energy

P (y, A, (). €).0v.u)
=EW A S) . EN+ Y > G vik+ DD (Ehm) thkm
i k k m

_% 3 In (Z exp wv,-k)) - % > In (Z exp(ﬂukm>)
i k k

m

where <N> , <Y> ,u,and vdenote {N}, {Y,}, {u,},and {v,},

respectively, and u; and v, are auxiliary vectors.




Multiple sets of interactive dynamics

- A tractable free energy function is
differentiable with respect to all of its
dependent variables

- Setting zeros to derivatives of a tractable
free energy function leads to multiple
sets of interactive dynamics




A hybrid of mean field annealing and gradient
descent methods

The gradient descent method can not be directly
applied to binary variables

MFE for binary variables and GD for continuous
variables

{6;} and {¢,} are associated with Potts neural variables
or Potts spins in statistical mechanism




Mean field equations

ik o oYV
—_— — (), = = (. foralli

0 (5) 00;

0 0
L3 0. —T — 0. forall k

0 (&x) YD




Two sets of Mean field equations

0E(y. A.(5).(5))
d (i)

'Ui= _

1 /
= —3(-\‘1' — yk)A(X; — yx) — cA'(qi — AS;)

5) _[ exp (Bvi1) exp (BUix) ]'
e )

L COE(y. A, (8). &)
: d (&)

= C Z <6ik) (Q: —A (61'))

&) = [ exp (Buiy) exp (Buigar) ]’
o= Zm eXP(Bllkm) 'Zm exp(Bukm)
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—E Z Z (5ik> (xim — ykrn)(xin — ykn) + 7[(A,) l]mn
Lo ko

When all AAnzn — O, we haVe

A=Wy,

1 N\ N\
\ Win = N L (Oik) (Xim — ykm)(xin — ykn)-




Update rule of local means

- Gradient

1
= > Z i) (A+ A")(xi —yy)

- Again when Ay = 0, we have

)i Sik) xi
= 5o




Annealing

Set B sufficiently low

Halting condition

, false

Update all
dependent variables

Increase




An annealing process for learning PottsDA

. Set a sufficiently low B value, each kernel 1y near the mean of all

predictors and each (§jx) near '11? and (&g ) near %

. Iteratively updateall (5;x) and v;x by equations 3.4 and 3.5, respectively,
to a stationary point.

. Iteratively update each (&) and u, by equations 3.6 and 3.7, respec-
tively, to a stationary point.

. Update each y; by equation 3.12.
. Update A by equations 3.9 and 3.10.

CIEY (S and Yy, (En ) are larger than a prior threshold, then halt:

otherwise increase B by an annealing schedule and go to step 2.




Numerical Simulations

Performance evaluation:
1. PottsDA

2. Radial basis function(RBF) method
3. Support vector machine(SVM) method (Vapnik

1995)




Artificial data: Example 1

Mixing matri

0.4384 —0.8988

0.8493  0.5279

PottsDA: two columns
of the inverse of A,
four kernels,

and category labels.
e

Table 1 The performance of the three methods for the first example

RBF(4) | RBF(8) | RBF(12) | RBF(24) | SVM | PottsDA{4)

Training | 14.1% 12.0% 8.6% 3.9% 13.2% | 0%

Testing | 13.0% 12.1% 8.3% 4.5% 14.3% | 0%




Artificial data: Example 2

—~

x(t) = Hs(1) <:| I —

0.9288 0.2803 0.3770

0.3122  0.9366 0.2572

0.1994  0.2098 0.8897

(3 s@) = [s'(1) (1) s*0)]’

T

*s’(t) and s?(¢), are uniform random
variables within [-0.5,0. 5]

*s3(t) is a Gaussian noise of N(0,\2)
*Discriminate rule: sign(s’(t)) *sign(s(t))

the third source as a noise for prediction.

Table 2 Performance of the three methods for the second example

RBF(4) | RBF(8)

RBF(12)

RBF(24)

SVAM | PottsDA(4)

Training | 45.3% | 31.2%

22.6%

10.9%

3.2% | 0.2%

Test 44% 31.1%

24.6%

13.9%

5.9% | 0%




Artificial data: Example 3

PottsDA:
Two columns of the inverse of A
40 local means,

and category labels

Table 3 Performance of the three methods for the third example

SVM

RBF(40)

RBF(50)

RBF(60)

RBF(80)

PottsDA(40)

Training

14.6%

10.4%

7.8%

3.3%

45.5%

0.8%

Test

15.7%

12.3%

9.5%

4.1%

45.6%

0.4%




Incremental learning for Example 3
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I'he horizontal coordinate is the time index for varying the beta value




Discriminate analysis of
Wisconsin Breast Cancer Database

*Walberg and Mangasarian 1990
* 699 instances,
each containing 9 features for predicting one of

benign and malignant categories.

458 1nstances 1n the benign category

241 1nstances in the malignant category




PottsDA

Wisconsin Breast Cancer Database

Breast Cancer
Diagnosis

Benign
Or
Malignant

— ( Feature extractor

Features:

clump thickness

uniformity of cell size
uniformity of cell shape
marginal adhesion

single epithelial cell size
bare nuclei

bland chromatin

normal nucleoli and mitoses




Simulation Results

error rate for testing > 6%

683 instances of the database by Malini
Lamego(2001)

PottsDA(42) | Neural Net with algebraic loops

Train(483) | 1.4% 2.3%

Test(200) | 1% 4.5%

For the 219-case test set, the RBF method with 80

kernels and the SVM method result in error rates,
4.17% and 4.63%, for testing.




Conclusions

PottsDA

A discriminant network
An annealed learning approach

Translate discriminate analysis to minimization of
fitting criteria and approximating errors

PottsDA learning is realized by a hybrid of mean
field annealing and gradient descent methods

Incremental learning for PottsDA is effective for
determining the optimal model size.

Encouraging learning results of PottsDA
discriminate analysis.
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