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• Conclusions



Paired data
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A generative model for predictors
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Prior probabilities
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Generation of predictors: 
According to prior probabilities, each time one of joined  
sub-models is selected and triggered to generate a predictor  
 



Sub-models

• Multivariate Gaussians 
• pdf   





• A common weight matrix, A



Gaussian mixtures

• Gaussian mixture assumption: given 
predictors are sampled from Gaussian 
mixtures 

• pdf

∑=
k

kpp )()( xx



Examples: Gaussian Mixtures

• Linear local means



Examples: Gaussian mixture

• Four local means 
• Non-overlapping distributions 
• A common weight matrix for rotation



Examples: Gaussian mixtures

• Spiral data



Unitary vectors for category representations

• Example: two categories
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Unitary vectors for category representations

• Example: three categories
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Training set=

PottsDA(θ) q=g(x; θ) Testing set

Correct rate

Discriminate analysis of paired data

Training set 
d=2 
N=800 
S={(0 1),(1 0)}

Testing set 
d=2 
N=800 
S={(0 1),(1 0)}



Voronoi partition

Voronoi Partition defined by A and all yi  in θ  

Ωk =  {x | k= arg minj‖x - yj‖A}
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Voronoi partition

Partition based on Mahalanobis distances



Voronoi partition

Partition based on Euclidean distances

 A=I



Memberships

• Unitary vectors for membership representations
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Exclusive Memberships
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Category labels

• Let each region possess its own category 
label, denoted by 

•   
m
ξ

labelscategory  all of collection denotes ξ



Discriminating function

• θ and ξ define a discriminate function
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Discriminate function



Discriminate functions
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Overlapping memberships
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    dynamics 
     for yPotts model  

   for <δ>
Potts model  
   for <ξ>

     dynamics 
     for A

                  
inter-connection data networks 
 ( A,{y} ,<δ>, <ξ>)

   

Learning Network of PottsDA



Fitting Gaussian mixtures

• Translate fitting a generative model to 
tasks of fitting joined individual sub-
models
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Fitting a submodel

• Maximal likelihood
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• Setting det(A-1) = - det(A) and neglecting the last constant term  




• Maximizing the function l is equivalent to minimizing 
the function E1 

Fitting criteria



Discriminating errors



MINP: A mixed integer nonlinear programming

• Objectives



Constraints



MINP

• Mixed integer nonlinear programming 
• Minimize E subject to unitary constraints 

of Potts variables



A mixed energy function for MINP



• The system obeys the Boltzmann distribution

Boltzmann assumption



• Physical annealing schedules the parameter K 
gradually from sufficiently low to high values 

• At sufficiently large K value, the Boltzmann 
distribution will be dominated by optimal 
configurations, 


     

Physical annealing



• A free energy measures the sum of the mean energy and  
  the negative system entropy 
• Independent assumption 

• All individuals are statistically independent 
• The mean energy can be approximated by substituting  
   individual means to E 
• The system entropy equals the sum of individual  
   entropies

A free energy



A tractable free energy

where〈N〉,〈Y〉, u , and v denote {Ni}, {Yk}, {ukm}, and {vik}, 

      respectively, and ui and vk are auxiliary vectors.



Multiple sets of interactive dynamics

• A tractable free energy function is 
differentiable with respect to all of its 
dependent variables 

• Setting zeros to derivatives of a tractable 
free energy function leads to multiple 
sets of interactive dynamics



A hybrid of mean field annealing and gradient 
descent methods

• The gradient descent method can not be directly 
applied to binary variables 

•  MFE for binary variables and GD for continuous 
variables 

• {δi} and {ξk} are associated with Potts neural variables 
or Potts spins in statistical mechanism



Mean field equations 



Two sets of Mean field equations 



When all AAmn = 0 , we have

Updating rule of weight matrix A



• Gradient 



       

• Again when Ay = 0 , we have

Update rule of local means



Annealing

Set β sufficiently low

Halting condition

false

Update all  
dependent variables

Increase β



An annealing process for  learning PottsDA



Numerical Simulations

• Performance evaluation: 
      1. PottsDA 
      2. Radial basis function(RBF) method  
      3. Support vector machine(SVM) method (Vapnik 

1995)



Mixing matrix

PottsDA: two columns 
of the inverse of A, 
four kernels,  
and category labels.

Artificial data: Example 1



Artificial data: Example 2

x(t) = Hs(t) s(t) = [s¹(t) s²(t) s³(t)]’


•s¹(t) and s²(t), are uniform random  

 variables within [-0.5,0.5]  

•s³(t) is a Gaussian noise of N(0,√2)  

•Discriminate rule:  sign(s¹(t)) *sign(s²(t))  

  the third source as a noise for prediction.



Artificial data: Example 3

PottsDA:  

Two columns of the inverse of A 

40 local means,  

and category labels



Incremental learning for Example 3
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The horizontal coordinate is the time index for varying  the beta value



Discriminate analysis of  
Wisconsin Breast Cancer Database

•Walberg and Mangasarian 1990  

• 699 instances, 

  each containing 9 features for predicting one of    

  benign and malignant categories.  

• 458 instances in the benign category 

  241 instances in the malignant category



FNA細胞樣本

Microscopy

Feature extractor

PottsDA 
Breast Cancer 
Diagnosis

Benign 
Or  
Malignant

Features: 
clump thickness 
uniformity of cell size 
uniformity of cell shape 
marginal adhesion 
single epithelial cell size 
bare nuclei 
bland chromatin 
normal nucleoli and mitoses

Wisconsin Breast Cancer Database



• Walberg and Mangasarian 1990 
     error rate for testing  >  6% 
• 683 instances of the database  by Malini 

Lamego(2001)  
     




• For the 219-case test set, the RBF method with 80 
kernels and the SVM method result in error rates, 
4.17% and 4.63%, for testing.

Simulation Results



Conclusions
• PottsDA 

• A discriminant network 
• An annealed learning approach 

• Translate discriminate analysis to minimization of 
fitting criteria and approximating errors 

• PottsDA learning is realized by a hybrid of mean 
field annealing and gradient descent methods 

• Incremental learning for PottsDA is effective for 
determining the optimal model size. 

• Encouraging learning results of PottsDA 
discriminate analysis. 
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