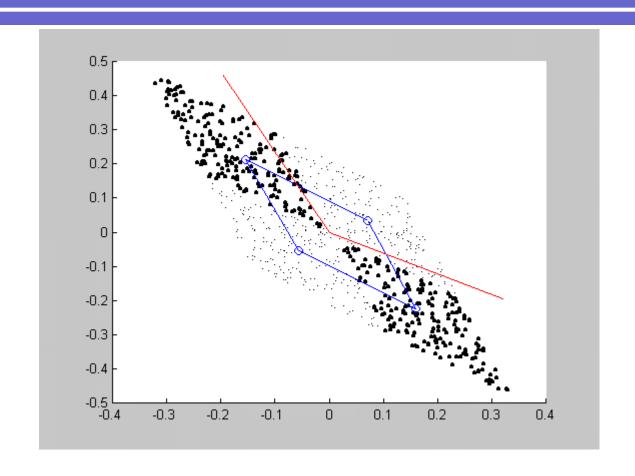
Independent component analysis

Bio-signal analysis

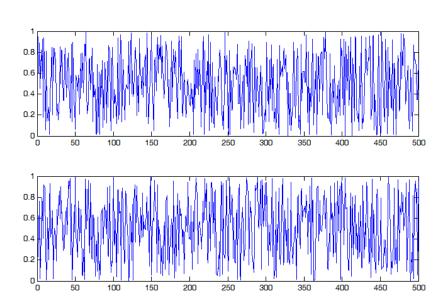
Statistical dependency



Two components

Two independent sources

```
d=2;N=500;
s=rand(2,500);
subplot(2,1,1)
plot(1:1:N,s(1,:));
subplot(2,1,2)
plot(1:1:N,s(2,:));
```

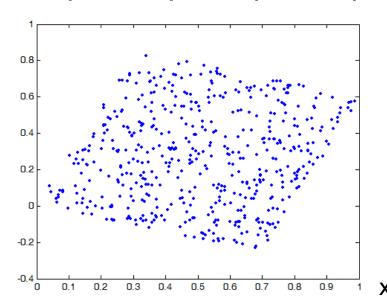


Linear mixtures

Instant mixing

x2

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \mathbf{A} \begin{bmatrix} s_1(t) \\ s_2(t) \end{bmatrix}$$



Stochastic modeling of sources

- S₁ and S₂ are independent random variables
- S₁ and S₂ represent independent sources iff

$$p(s_1, s_2) = p_1(s_1)p_2(s_2)$$

- p: joint pdf
- p_1 , p_2 : marginal pdfs

Rotated uniform sample

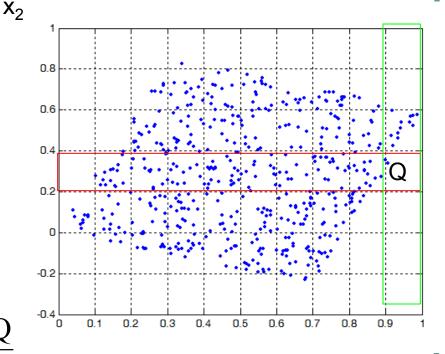
Statistical dependent components

- N: all data number
- N₁: data number within red rectangle
- N₂: data number within green rectangle

$$\frac{N_1 N_2}{N^2}$$

number of data within square Q

N



 X_1

Artificially created independent sources

$$\mathbf{s}[t] = \begin{bmatrix} sign(\cos(2\pi t/155)) \\ \sin(2\pi t/800) \\ \sin(2\pi t/300 + 6\cos(2\pi t/60)) \\ \sin(2\pi t/90) \\ r(t) \end{bmatrix}$$

r(t): uniform sample

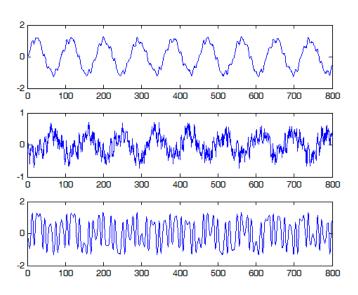
Three-channel observations

```
t=1:800;\\ a=sin(2*pi*t/90);\\ b=rand(1,800)-0.5;\\ c=sin(2*pi*t/300+6*cos(2*pi*t/60));\\ s=[a;b;c];\\ plotsig(s);
```

Linear mixtures of independent sources

A=eye(3)*0.8+(rand(3,3)-0.5)*0.7; x=A*s; plotsig(x)

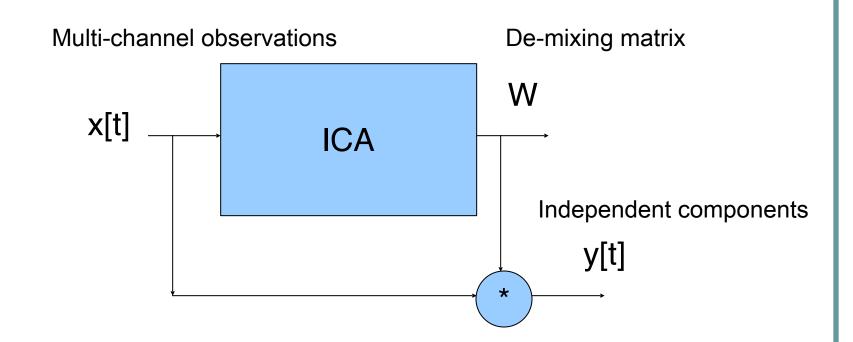
X[t]=As[t]



Independent component analysis

- Linear mixture assumption:
 Multi-channel observations are linear mixtures of independent sources
- Independent component analysis is aimed to recover independent sources for given multi-channel observations.

ICA algorithms



De-mixing

- An ICA algorithm returns a de-mixing matrix
- Multiplying the de-mixing matrix to multi-channel observations is expected to attain independent components

$$y[t] = Wx[t]$$

Fast Independent Component Analysis

FastICA

Independent Component Analysis: The Book

Publications by Aapo Hyvarinen: FastICA

Negative entropy

$$J(\mathbf{y}) = H(\mathbf{y}_{gauss}) - H(\mathbf{y})$$

Differential entropy

$$H(\mathbf{y}) = -\int f(\mathbf{y}) \log f(\mathbf{y}) d\mathbf{y}$$

 \mathbf{y}_{gauss} is a Gaussian vector of the same covariance matrix as \mathbf{y}

An approximation to negative entropy

Cumulant - based approximation

$$J(y) \approx c \left[E(G(y)) - E(G(v)) \right]^{2}$$

y: zero mean and unit variance

v: a Gaussian variable of zero mean and unit variance

FastICA

Find one IC by maximizing

$$\mathbf{J}(\mathbf{w}) = [E\{\mathbf{G}(\mathbf{w}^T\mathbf{x})\} - E\{\mathbf{G}(v)\}]^2$$

constrained by

$$E\{(\mathbf{w}^T\mathbf{x})^2\} = 1$$

 \mathbf{w} : an $m \times 1$ vector

Nonlinear equations

Let

$$G(y) = \frac{1}{4}y^4,$$

$$g(y) = \frac{dG}{dv} = y^3$$

Maximizing J_G(w) is realized by solving

$$E\{\mathbf{x}\mathbf{g}(\mathbf{w}^{T}\mathbf{x})\} - \beta\mathbf{w} = 0$$
$$\beta = E\{\mathbf{w}_{0}^{T}\mathbf{x}\mathbf{g}(\mathbf{w}_{0}^{T}\mathbf{x})\}$$

 \mathbf{w}_0 is the value of \mathbf{w} at

the optimum

Jacobi matrix

$$F(\mathbf{w}) = E\{\mathbf{x}\mathbf{g}(\mathbf{w}^{\mathsf{T}}\mathbf{x})\} - \beta\mathbf{w}$$

$$J(\mathbf{w}) = \frac{dF}{d\mathbf{w}} = E\{\mathbf{x}\mathbf{x}^{\mathsf{T}}\mathbf{g}'(\mathbf{w}^{\mathsf{T}}\mathbf{x})\} - \beta\mathbf{I}$$

$$= E\{\mathbf{x}\mathbf{x}^{\mathsf{T}}\}E\{\mathbf{g}'(\mathbf{w}^{\mathsf{T}}\mathbf{x})\} - \beta\mathbf{I}$$

$$= E\{\mathbf{g}'(\mathbf{w}^{\mathsf{T}}\mathbf{x})\}\mathbf{I} - \beta\mathbf{I} \quad \text{if } E\{\mathbf{x}\mathbf{x}^{\mathsf{T}}\} = \mathbf{I}$$

Newton's method

Updating rule

$$\mathbf{w}^{+} = \mathbf{w} - F(\mathbf{w})J^{-1}(\mathbf{w})$$

$$= \mathbf{w} - \left[E\{\mathbf{x}g(\mathbf{w}^{T}\mathbf{x})\} - \beta \mathbf{w} \right] \left[E\{g'(\mathbf{w}^{T}\mathbf{x})\} - \beta \right]$$

$$normalization:$$

$$\mathbf{w}^{*} = \mathbf{w}^{+} / \left\| \mathbf{w}^{+} \right\|$$

$$\beta = E\{\mathbf{w}^{T}\mathbf{x}g(\mathbf{w}^{T}\mathbf{x})\}$$

Find multiple ICs

- We have $w_1, w_2, ..., w_{p-1}, w_p$
- We want to find the p+1 vector
 - Use updating rule to find \mathbf{w}^* and set $\mathbf{w}_{p+1} = \mathbf{w}$
 - Set

$$\mathbf{w} = \mathbf{w} - \sum_{k=1}^{p} \mathbf{w}_{k}^{T} \mathbf{w} \mathbf{w}_{k}$$

$$\mathbf{w}_{p+1} = \mathbf{w} / \|\mathbf{w}\|$$

Go to step 1

FastICA Package

- Download FastICA
- Unpack FastICA
- Add FastICA_2.5 to the path
- Run fasticag
 - load x
 - Plot data
 - Do ICA

ICA recent advances

 Independent component analysis: recent advances

Blind Separation of Time/Position Varying Mixtures

Ran Kaftory and Yehoshua Y. Zeevi

Abstract—We address the challenging open problem of blindly separating time/position varying mixtures, and attempt to separate the sources from such mixtures without having prior information about the sources or the mixing system. Unlike studies concerning instantaneous or convolutive mixtures, we assume that the mixing system (medium) is varying in time/position. Attempts to solve this problem have mostly utilized, so far, online algorithms based on tracking the mixing system by methods previously developed for the instantaneous or convolutive mixtures. In contrast with these attempts, we develop a unified approach in the form of staged sparse component analysis (SSCA). Accordingly, we assume that the sources are either sparse or can be "sparsified." In the first stage, we estimate the filters of the mixing system, based on the scatter plot of the sparse mixtures' data, using a proper clustering and curve/surface fitting. In the second stage, the mixing system is inverted, yielding the estimated sources. We use the SSCA approach for solving three types of mixtures: time/position varying instantaneous mixtures, single-path mixtures, and multipath mixtures. Reallife scenarios and simulated mixtures are used to demonstrate the performance of our approach.

Index Terms—Blind source separation (BSS), sparse component analysis (SCA), time/osition varying mixing/unmixing.

be statistically independent. This approach lends itself to a geometric interpretation of the mixing coefficients, whereby the mixing matrix entries can be retrieved from the scatter plot of the sparsified mixtures [9].

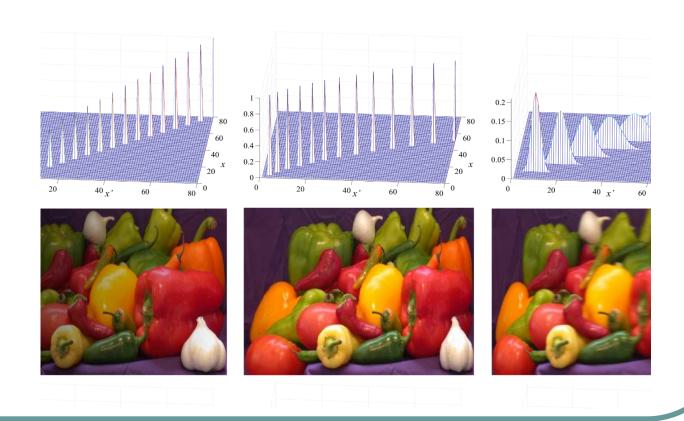
In most real-life scenarios, the mixing system is not constant as is in the case of instantaneous or convolutive model. It is varying as a function of time or position. For example, the attenuation of signals/images varies over time/position thus creating time/position varying instantaneous mixtures. The delay/shift or reverberation/blurring of a signal/image may also vary over time/position, creating a time/position varying single/multipath mixtures. Only few studies address this generalized BSS problem. Most of them use the ICA approach and assume a slow varying mixing system, thus, enabling the use of an adaptive version of the algorithms developed for the stationary cases.

In this paper, we extend and generalize the BSS problem and provide a unified approach to blind separation of certain classes of time/position varying mixtures that have not been dealt with so far. To this end, we present a framework of staged SCA (SSCA).

Blind separation of time/position varying mixtures

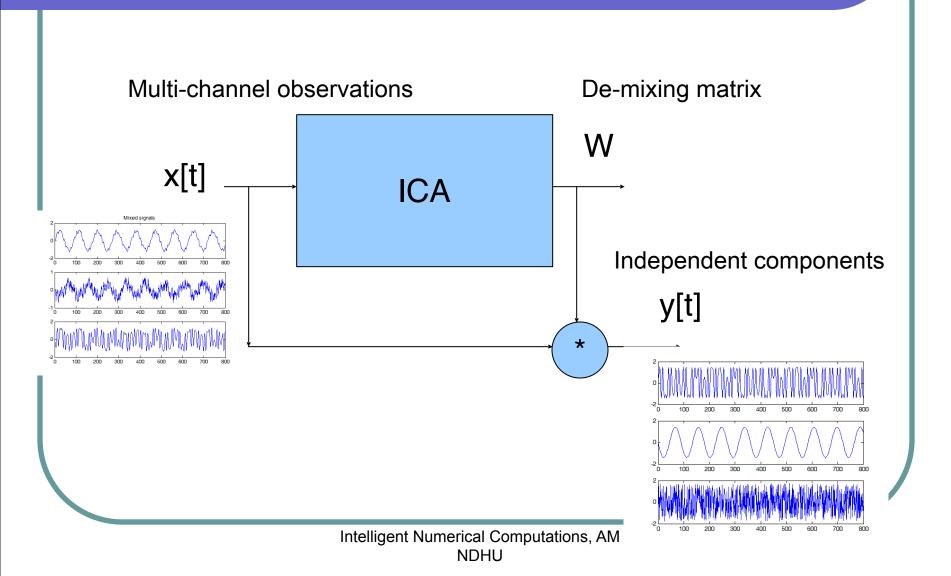
pdf

AND ZEEVI: BLIND SEPARATION OF TIME/POSITION VARYING MIXTURES



Independent component analysis

FastICA



Five sources

$$\mathbf{s}[t] = \begin{bmatrix} sign(\cos(2\pi t/155)) \\ \sin(2\pi t/800) \\ \sin(2\pi t/300 + 6\cos(2\pi t/60)) \\ \sin(2\pi t/90) \\ r(t) \end{bmatrix}$$

r(t): uniform sample

Five-channel observations

```
t=1:800;

a=sin(2*pi*t/90);

b=rand(1,800)-0.5;

c=sin(2*pi*t/300+6*cos(2*pi*t/60));

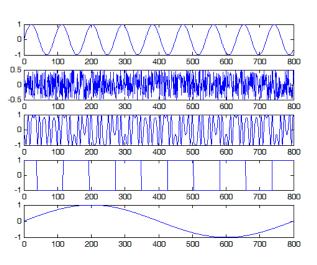
d=sign(cos(2*pi*t/155));

e=sin(2*pi*t/800);

s=[a;b;c;d;e];

plotsig(s);
```

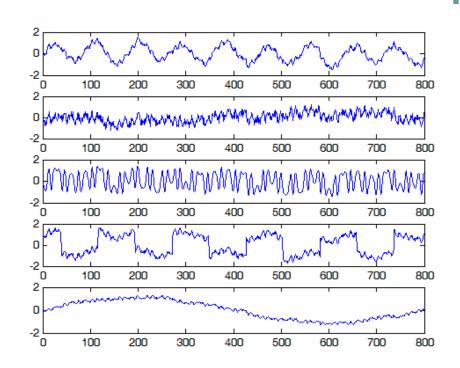
plotsig.m



Linear mixtures of independent sources

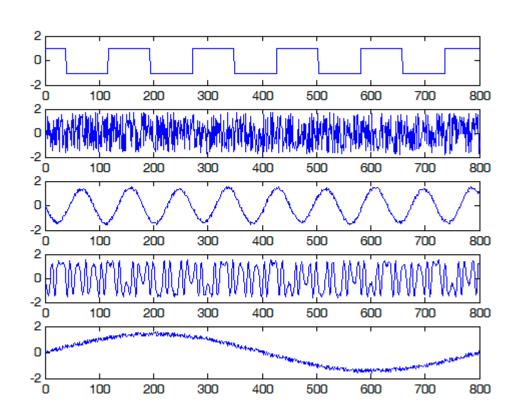
A=eye(5)*0.8+(rand(5,5)-0.5)*0.7; x=A*s; plotsig(x)

$$X[t]=As[t]$$



Recovered Independent components

ICs derived by FastICA



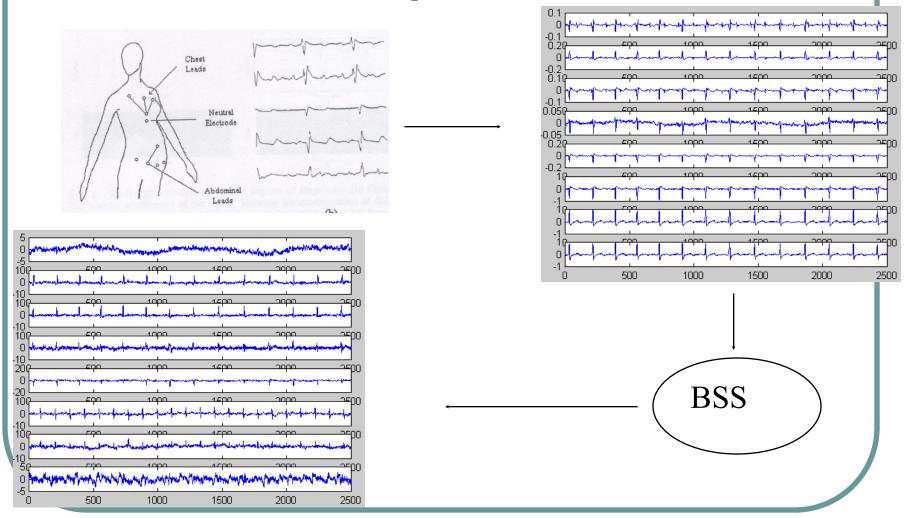
ICA algorithms

JadelCA

FastICA

PottsICA: Kullback-Leibler Divergence

Blind source separation – fetal ECG



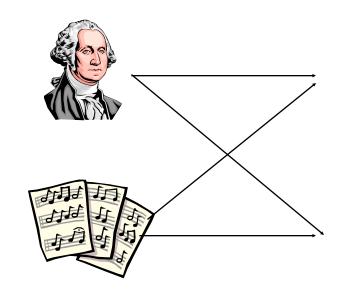
sources
mixed images

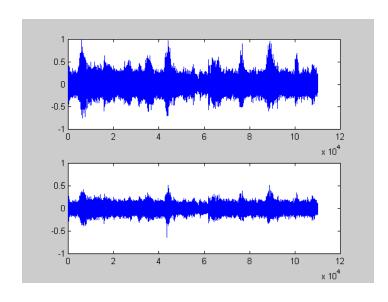
AemICA

JadeICA

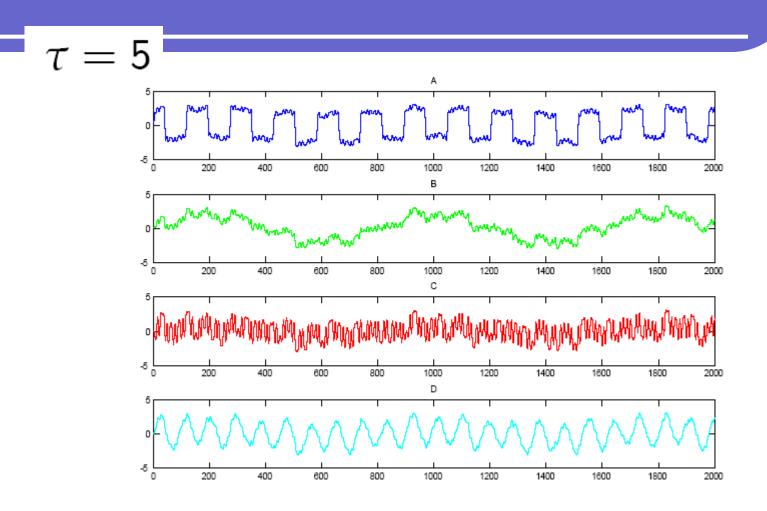
Sound separation

music and speech

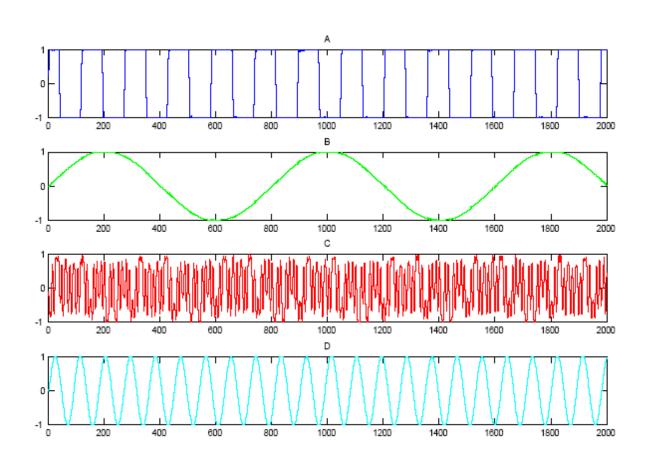




Convolutive mixtures



Recovered sources



Blind separation of real world signals

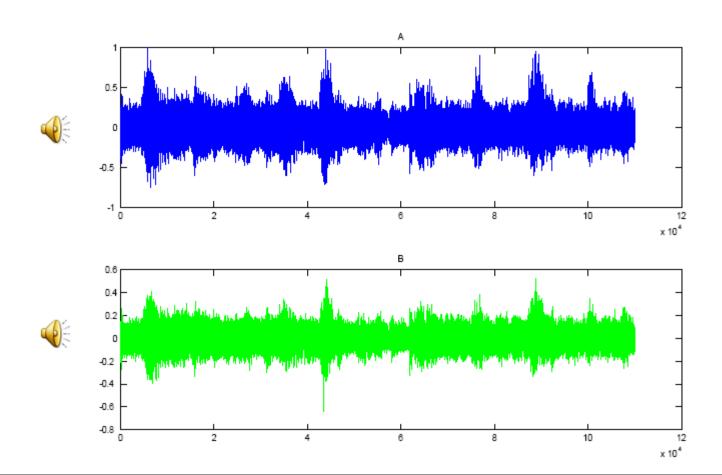
Blind separation of real world signals

The experiment results as follows:

- Two-microphone recordings of music and speech.
 - ► Channel-1 Sound
 - ► Channel-2 Sound
- Blind separation of recordings of music and speech.
 - ► Channel-1 Sound
 - ► Channel-2 Sound

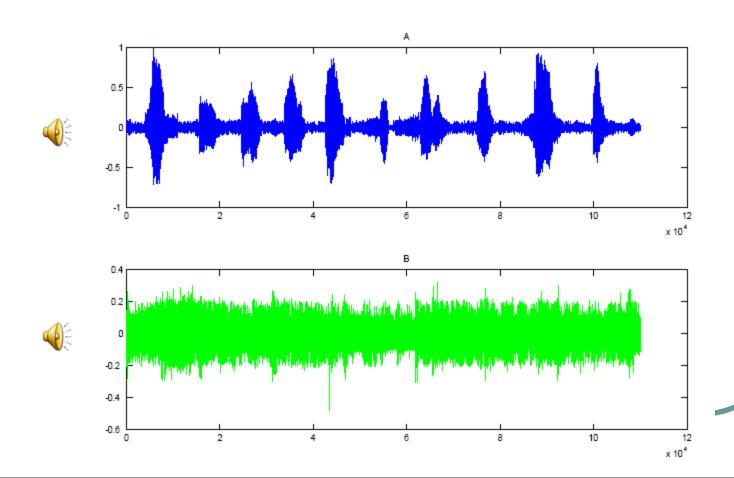
Demo

The recordings of two microphones are shown in the following figure.



Demo

The blind separation of music and speech are shown in the following figure.



JadelCA

Exercise:

- Download JadelCA package
- Apply JadelCA to deal with three-channel observations
- Apply JadelCA to deal with five-channel observations

Facial images

- Form linear mixtures of five facial images and a noise image
- Apply JadelCA to recover facial images

sources
mixed images

AemICA

JadeICA