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ABSTRACT

This work explores annealed cooperative-competitive learning of multiple modules of Mahalanobis
normalized radial basis functions (NRBF) with applications to nonlinear function approximation and
chaotic differential function approximation. A multilayer neural network is extended to be composed
of multiple Mahalanobis-NRBF modules. Each module activates normalized outputs of radial basis
functions, determining Mahalanobis radial distances based on its own adaptable weight matrix. An
essential cooperative scheme well decomposes learning a multi-module network to sub-tasks of learning
individual modules. Adaptable network interconnections are asynchronously updated module-by-
module based on annealed cooperative-competitive learning for function approximation under a
physical-like mean-field annealing process. Numerical simulations show outstanding performance of
annealed cooperative-competitive learning of a multi-module Mahalanobis-NRBF network for nonlinear
function approximation and long term look-ahead prediction of chaotic time series.

© 2014 Elsevier B.V. All rights reserved.
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Perceptrons

*Rosenblatt (1962), Widrow (1962)
*Post-tanh (sigmoid-like) projection
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Mahalanobis-NRBF modules

» A generative model for paired predictors
and targets

o A Mahalanobis-NRBF module
e Annealed competitive learning

o A network of multiple Mahalanobis-NRBF
modules

» Annealed competitive-cooperative
learning




A generative model for paired predictors targets

p(X|W1,A),q(y|I’1,1)

p(X | Wm’ A)’ q(y | Vm ’1)

p(X|WM’A)7Q(y|rMal)

Figure 1




A generative model theoretically characterizes data formation [15,16].
Here it is organized with multiple sub-models, each consisting of
paired normal random variables respectively generating paired pre-
dictors and targets. Each pair of predictor and target is oriented from
one and only one sub-model. Given training data are mixtures of
samples from joined sub-models. By Potts encoding of exclusive
memberships | 15,16], fitting a generative model could be decomposed

to sub-tasks of fitting joined sub-models and formulated as a mixed
integer programming, which involves constrained optimization with
respect to discrete integer variables and continuous model parameters.
Since the fitting criterion is not differentiate, its optimization with
respect to discrete and continuous variables is resolved by annealed
Kullback-Leibler divergence (KLD) minimization, which has been
devised for solving self-organization [15,17] and classification [16].
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A network of multiple Mahalanobis-NRBF modules

Fy (x;0))

F (x;0,)

F (%0 )

Figure 3




A Mahalanobis-NRBF module

Figure 2




Annealed Cooperative Learning

e The proposed cooperative learning asynchronously updates
network interconnec- tions module-by-module under a
physical-like mean-field anneal- ing process. By an essential
cooperative learning scheme the local target of learning an
individual module is set to compensate the error of
approximating the global target by outputs of the remain- ing

modules. Asynchronous updating ensures minimizing the
global error by refining each individual module of minimizing
local errors. By the proposed annealed cooperative—
competitive learning, the model-oriented multi-module
architecture is shown feasible for resolving nonlinear function
approximation and chaotic differential function approximation




paired normal random variables

Pm(X) = p(X|Wr, A)
T
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where d is the input dimension, T denotes matrix transpose, A is a
positive definite d xd matrix that denotes the inverse of a
common covariance matrix, and wy,, and r,, respectively denote
means of predictors and targets in a sub-model.




Each time a generative model randomly selects one of joined
sub-models according to a set of prior probabilities, triggering to
produce paired instances, (X;,y;), where X; e R? and y; € R. Each
(X;,y;) possesses its exclusive membership to joined sub-models.
All generated paired data form a training or testing set. The
exclusive membership of (X;,y;) to joined sub-models is encoded
by a multi-state Potts variable [15,16,18-22]. Potts encoding

facilitates decomposition of fitting a generative model to sub-
tasks of fitting individual sub-models. By Potts encoding this work
translates model fitting to a mixed integer programming that aims
to minimize an energy function with respect to dependent vari-
ables, including built-in model parameters and discrete exclusive
memberships. Since the energy function contains discrete vari-
ables, it is not differentiable. Its minimization could not be directly
resolved by typical gradient-based methods.




As in previous works [ 15,16], sub-models in a generative model
share a common covariance matrix A~ '. This helps expressing
expected exclusive memberships in terms of Mahalanobis dis-
tances and associating the conditional expectation of target y to x
with the input-output relation of a Mahalanobis-NRBF module. If

A is diagonal, p,, is factorial and components of predictors are
statistically independent. Otherwise A plays a role of compensat-
ing statistical dependency among components of predictors,
serving as the sole weight matrix of measuring Mahalanobis radial
distances in a Mahalanobis-NRBF neural module.
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A Mahalanobis-NRBF neural
module —

o Conditional probability

_ 2
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Let 6 = (54,...,0m)" be a Potts variable whose possible outcomes
belong =\ = {en},,, where e, denotes a unitary binary vector with

the mth bit one and others zeroes. It follows 6,, belongs {0, 1} and
the sum of binary elements in 6 equals one. The exclusive
membership é of x is encoded by e;» where
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Conditional expectation




Overlapping membership

V= (V1,...,vy)' €[0, 1]
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Annealed KLD minimization

o Mathematical frameworks
e Annealed competitive learning




design cost

DS(H)__ Z ly; — F(x;; 0)|1%

1_1




Fitting a generative model

Let §;=(5j1,...,0my) be a Potts variable that encodes the
exclusive membership of X; to M joined sub-models, where 0;,
is binary and 0; belongs =),. Encoding 0; to e, means that X; is
closest to w,; and oriented from the mth sub-model. Let
Xm = {X;|0; = e} denote collection of predictors with member-
ships identical to e,,. Let L,;, denote the log likelihood of fitting p,,
to X;,,. Summing up all negative L,, induces a fitting criterion

E] — ZLm,
m




a mixed energy function

EA.0) = E; +1E,

1 N A
= izz&'m (Xi — W)  AX; — W) — 5108 Al + jzzéim ('m—Yi)°,

(12)
where A is non-negative and A denotes collection of exclusive
memberships. Minimizing E subject to constraints,

Yoim=1, Vi,
m
5im € {09 1}9 Vl, ma




Boltzmann distribution

Pr(A) oc exp(—PEA0)),

where / denotes the inverse of a temperature-like parameter and
A|@ denotes the case of fixing 6. A is composed of N M-state
random variables. The summation over the configuration space of
A is intractable in computation for large M and N. A factorial form
is considered. The joint pdf of A is approximated by the product of
marginal pdfs of all o;,,. The factorization is realized by minimizing
17| the Kullback-Leibler divergence (KLD) that measures the
expected ratio of the product of marginal pdfs to the joint pdf.
Since marginal pdfs of all 6;, can be totally determined by
expectations of all 9;,, the KLD induces a tractable free energy
function. Relevant derivations have been presented in the previous
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A tractable free energy function

(), W16) = EQA)I0)+ EE Gt~ 5% In( Z exp(Bum) ). (13

where (0;,,) denotes the mean of o;,, and u denotes collection of
auxiliary variables u;,,. Minimizing the KLD along an annealing
process has been shown feasible for resolving the mixed integer
programming [17]. y is differentiable with respect to means of
Potts variables as well as model parameters. Its saddle point can be
determined by iteratively executing multiple sets of interactive
dynamics. Under an annealing process, a free energy function
eventually evolutes to recover the original mixed energy function.
Similar tractable free energy functions have been formulated in
previous works [6,15-19] for solving complex tasks in the field of
neural networks.




Annealed competitive learning

The proposed annealed KLD minimization mainly tracks the
saddle point of y/; under an annealing process. Since S modulates
the freedom degree of random variables, the contribution of
entropies to y, (13) inversely proportional to [ vanishes at
sufficiently large f, where W reduces to recover original E. An
annealed competitive learning addresses on tracking member-
ships from overlapping to exclusive forms under an annealing

process, which schedules f from sufficiently small to high values
to emulate physical annealing as in [18,19]. y is differentiable with
respect to individual expectations in {(A) as well as model para-
meters in 6. By setting

oy :

=0 foralli,m,
a<5im>
oy

=0 foralli,m,




Interactive Dynamics

oE 1

o _ | TA(x. A 2
Uim = _a<6—im>— —i(x,—wm) A(xl—Wm)—i(Tm =y, (14)

exp(fuin)
Y exp(Puy) (1)

The mean configuration (A) determined by (14)-(15) under
each intermediate f feedbacks to refine model parameters in 6.
Setting zero to derivatives, oy /oWy, oy /dA,, and oy /ory, derived
in Appendix A, leads to the following updating rules:

i 5im i
S a6

<5im> —

Wi

A=BH (17)

i 5im i
fm= %ﬁ(éin?; (18)

where the element in matrix B is defined by

1
Bab = NZ%(&'m)(xia - Wma)(xib - me)-




optimal [3

ﬁopt = dI'g n;lrn DS,,B(H)a

where

1
Ds 5(0) =52 1lyi — Fp(Xi: O)]1°.
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A multi-module Mahalanobis-

The multi-module network in Fig. 3 consists of K Mahalanobis-
NRBF modules. Let @, denote collection of parameters in the kth
Mahalanobis-NRBF module. The mapping by a multi-module net-
work is expressed by

G(X) = %Fﬁ(X; 0,). | F,(x;0)) (21)

-| F3(x;0,)

Fy(x;0,)




Special cases

1. When K >1 and M =1, the denominator in (9) is ignored. In
the occasion, G reduces to the mapping of a 3-layer RBF
network explored in [23,24], where each hidden unit deter-
mines its external fields based on its own weight matrix, but
the outputs of hidden units are not normalized.

2. When M=1 and Ay =1/0¢ for all k, G reduces to define the
input-output relation of typical RBF networks explored in
16,8,9,25], where outputs of hidden units are not normalized
and radial basis functions adopt Euclidean distances.




3. For K=1 and M > 1, G reduces to Fg (10) that defines the
mapping of a Mahalanobis-NRBF module, where external fields
to hidden units are in terms of Mahalanobis distances based on
a common weight matrix and all hidden units respond normal-

ized activations.

4. When K=1 and A =1/0?, G reduces to characterize normalized
RBF networks explored in [7,26-30]|, where external fields to
hidden units are based on Euclidean distances.

-




Annealed cooperative—

yilll = Fp(x;:0)).

As in [36], a local target, denoted by y;[k] for module k, is set to

compensate for the error of approximating y; by the sum of the
other K—1 modules, such as

yilkl=y;— X yilll, (22)

[ #k




Appendix B. A procedure for annealed competitive learning

1 Set f sufficiently small, @ near and less than one, A positive,
A=0.01 xI, and

1 1 1
W =52Xi,  Oim)=pp  Tm=52Vi
1 1

. If y is less than a pre-determined threshold, apply small
random perturbations to all (9;;,).
. Update all (0;;) by (14) and (15).
. Update all w,; by (16).
. Update A by (17).
. Update r,;, by (18).
7. p<p/a.If y is close enough to one, halt, otherwise go to step 2.




Appendix C. A procedure for annealed cooperative-
competitive learning

. Input all (x;,y;), and set f sufficiently small, @ near and less
than one and 8, to 0, for all k.
. Determine y, for each k. If the mean of all y, is greater than a

predetermined threshold, halt.
. Execute the following steps for each k asynchronously.
(a) Calculate y;[k] by (22) for all i.
(b) Employ {(x;,y;[k])}; to update all w,,, r,;, and A, in 6.
(i) Update {(0;;)} by (14) and (15).
(i1) Update all w,, by (16).
(i11) Update all A by (17).
(iv) Update all r,,, by (18).
4. < f/a. Go to step 2.




Nonlinear function
approximation




Table 1
Target functions.

f1(X) = sin (X1 +Xx2)

f2(X) = X% +x3

f3(x)=0.5x5 —0.9x5

fa(X) = exp(—0.05x% —0.09x5)

fs(Xx) = sin([1, —1]'x)+exp(—xTAx)

fe(X) = tanh(0.8x7 +0.2x,)+ sin (0.3x; —0.9x5)
f7(X)=0.5sin (X1 +x2)+0.2x; —0.2x;

fe(X) =exp(—(X—w;) AX—wW;))+exp(— (X —w;) B(x—wy))

fo(X)=fg(X)+0.5 sin(x; +0.3x5)+0.5 sin(0.2x; —0.8x5)
f10(X) = sin (X1 +X3 +X3)+ €COS (X1 +X2 +X3)
f11(%) = tanh(x1 +X2 +X3 +X4)




NREBF(3) by annealed FE
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0 1 1
0 5 10

Fig. 5. Mean square testing errors of annealed competitive learning (blue curve)
and the Rdtsch method (red curve) in approximating f; versus the numbers of
hidden units. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)




Table 2
Quantitative performances of the five relevant methods in approximating the first four target functions.

Mean square error

Mahalanobis-NRBF
(K=1, M=41)

Euclidean-RBF
(Ratsch, M=41)

Euclidean-RBF
(LM, M=41)

MLP
(LM, M=41)

Training
fi
f
f
fa

Testing

fi
f
f5
fa

3.4e—-5+0
12e—3 +4.5e—-7
1.0e—3+34e—-7
27e-3+0

7.4e—-5+0
4.0e—3+4.6e—6
1.5e—-3 +6.5e—-7
3.7e-3+0

l4e—-2+11e-5
41e—1+47e-3
85e—-2+2.0e—-4
25e—-3+0

23e—-2+3.0e-5
1.7e0 +7.3e-2
12e—-1+22e—-4
43e-3+0

1.8e—3+9.5e—-7
1.4e0 + 2.5e—1
22e—1+11e-3
2.7¢e-3+0

6.4e—3+49e—-6
6.0e0 + 3.1e0
6.2e—1+11e-2
41e—-3+0

9.6e—5+8.2e-9
23e—-2+49e-5
49e—-34+1.6e—6
34e—-3+12e-7

1.8e—3 +11e-5
34e—-2+28e—-4
70e—3 +84e—6
40e—-3+29e-7




Table 3
Quantitative performances of the relevant methods for approximating fs—fs.

Mean square error

Mahalanobis-NRBF
(K=2, M=41)

Euclidean-RBF
(Rdtsch, M=41)

Euclidean-RBF
(LM, M=41)

MLP
(LM, M=41)

MLP
(BP, M=41)

Training
fs
fe
f7
fs

Testing
fs
fe
f7
fs

1.0e-5+0
1.7e-5+2.2e—-11
41e—-5+0
40e—-7+0

24e—-4+16e—-7
6.3e—5+4.2e—-10
43e—4+42e-8
24e—-6+0

14e—-2 + 1.6e—-5
1.5e—-3+53e—-8
27e—-3+1.7e-7
54e—-6+0

28e—2+34e-5
3.0e—-3 +5.6e—7
45e—3+9.5e—-7
74e—-6+0

44e—-3+39e—-6
5.8e—4+48e—-8
31e—-3+34e-7
14e—-4+0

1.9e—-2+6.8e—-5
12e—-3+13e-7
9.2e—-3+91e-7
28e—4+1.6e—-9

1.5e—-3+4.1e-6
3.2e—-4+92e-9
13e—-3+79e-7
6.9e—5+53e—-10

2.2e—-3+6.4e—-6
42e—4+17e—8
2.7e—-3+52e-6
1.0e—4 +49e—-10

9.8¢e—2+12e-2
3.5e—-2+58e-6
lle—1+24e-5
1.9e—-3 +1.6e-7

1.3e—1+18e-2
49e—2 +84e—-6
12e—1+18e-5
22e—-3+54e-7




NREF by annealed FE leaming
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NREF by annealed FE leaming
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Chaotic differential function
approximation




X ax(t—7)
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source

R

1000

approximation

T I !

I I '
200 250 300

approximating error
T I

1 L '
200 250 300



Approach

mses,

mean + var

mses,

mean + var

50
Dy,

mean + var

Mahalanobis-NRBF modules (K=3)
MLP-LM (8)

MLP-LM (15)

RBF (Rdtsch, M=30)

4.68e—7+0
5.22e—-5+3.51e—-10
4.61e-5+0
8.92e—-5+241e-9

2.22e-6+0

6.20e -5+ 6.77e—10
531e—5+1.51e—10
7.10e—5 + 2.06e -9

5.00e—-3 +1.77e—-5
408e—2+292e—-5
428e—-2+1.07e—4
551le—2+113e—4




a
13 50-step-look-ahead long term predictions of Mackey-Glass 17 data
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13 200-step-look-ahead long term predictions of Mackey-Glass 17 data
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Fig. 10. n,-step-look-ahead predictions of MG17 time series with n, =50 and n, =200 by annealed cooperative-competitive learning with K=2. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)




Mackey-Glass 30 data

50-step-look-ahead long term predictions of Mackey-Glass 30 data

Figure 11







X =x(t—7)—x>(1—-1),

ot

where the delav 7 is set to 1.6




Conclusions and discussions




