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Scientists working with large volumes of high-dimensional data, such as global
climate patterns, stellar spectra, or human gene distributions, regularly con-
front the problem of dimensionality reduction: finding meaningful low-dimen-
sional structures hidden in their high-dimensional observations. The human
brain confronts the same problem in everyday perception, extracting from its
high-dimensional sensory inputs—30,000 auditory nerve fibers or 10° optic
nerve fibers—a manageably small number of perceptually relevant features.
Here we describe an approach to solving dimensionality reduction problems
that uses easily measured local metric information to learn the underlying
global geometry of a data set. Unlike classical techniques such as principal
component analysis (PCA) and multidimensional scaling (MDS), our approach
is capable of discovering the nonlinear degrees of freedom that underlie com-
plex natural observations, such as human handwriting or images of a face under
different viewing conditions. In contrast to previous algorithms for nonlinear
dimensionality reduction, ours efficiently computes a globally optimal solution,
and, for an important class of data manifolds, is guaranteed to converge
asymptotically to the true structure.



Science

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K = 7 and N =

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Ihree steps

are detailed 1n Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances d,.(i,))
between pairs of points 7,j 1n the mput space



X. Two simple methods are to connect each
point to all points within some fixed radius e,
or to all of 1its K nearest neighbors (/5). These
neighborhood relations are represented as a
welghted graph G over the data points, with
edges of weight d,(i,j) between neighboring
points (Fig. 3B).



In 1ts second step, Isomap estimates the
geodesic distances d, ,(i,j) between all pairs
of points on the manifold M by computing
their shortest path distances d(i,j) in the
graph G. One simple algorithm (/6) for find-
ing shortest paths 1s given 1in Table 1.



The final step applies classical MDS to
the matrix of graph distances D = {d(i,))},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors y,
for points 1n Y are chosen to minimize the
cost function

E = |7(Dg) — 7(Dy)||12 (1)

where D, denotes the matrix of Euclidean

distances {d,(i,j) = |y, — y/l/} and 4],
the L* matrix norm \/Ei’ ; Alz] The T operator




