Linear and nonlinear independent component analysis by leave-oneout gadaline approximation

> Jiann-Ming Wu Department of Applied Mathematics National Dong Hwa University

Outline

Generative models of multi-channel observations

- □ Linear mixtures
- Post-nonlinear mixtures

Gadaline Networks

- □ Generalized adalines
- □ Single gadaline approximation
- □ Multiple gadalines for PNL mixtures
- Leave-one-out gadaline approximation
 - □ Estimation of model parameters and independent sources
- Numerical simulations
- Conclusions

Multi-channel observations

Maternal ECG

Independent sources

PottsNICA (Wu & Chiu 2001;Wu 2007)

Multi-channel observations

- ERP
- SALK Institute
- **(**Makeig et al,1997)

Independent components of ERP

(Wu et al,2005) Fz F3 **P**2 N1 N2 Cz F4 $Pz \longrightarrow C3$ P3 Oz

ICA of mixed facial images

(Wu et al,2005)

KL divergence

- Our previous works are based on minimization of Kullback-Leibler divergence.
- The KL divergence is a typical measure for statistical dependency between retrieved components

Pots-nonlinear mixtures

Model parameters

- Linear mixing matrix A
 Post-nonlinear functions f₁, f₂,..., f_d
 f_i(x; c) is a one dimensional nonlinear function.
 - f_i depends on parameters(knots) in vector **c**

PNL ICA

- Given multi-channel observations, PNL
 ICA aims to recover independent sources
- The by-product includes an estimation to model parameters

Gadalines

Adalines (Widrow, 1962)

Generalized adalines

- Jiann-Ming Wu, Zheng-Han Lin, and Pei-Hsun Hsu
- □ IEEE Trans. on Neural Networks, 2006)

Multiple inputs single output(MISO)

AdalineThreshold PNL

Two-state transfer function

Non-overlapping intervals I_1

 I_2

Triple state transfer function

Non-overlapping intervals $I_1 \qquad I_2 \qquad I_3$

K-state transfer function

$$\theta_{3}(x;h) = [1,0,0] = \mathbf{e}_{1}^{3} \text{ if } h \in I_{1}$$
$$= [0,1,0] = \mathbf{e}_{2}^{3} \text{ if } h \in I_{2}$$
$$= [0,0,1] = \mathbf{e}_{3}^{3} \text{ if } h \in I_{3}$$

$$\theta_{K}(h; \mathbf{c}) = \left\{ \begin{array}{l} \mathbf{e_{1}^{K} \text{ if } \mathbf{h} \in \mathbf{I}_{1}} \\ \vdots \\ \mathbf{e_{i}^{K} \text{ if } \mathbf{h} \in \mathbf{I}_{i}} \\ \vdots \\ \mathbf{e_{K}^{K} \text{ if } \mathbf{h} \in \mathbf{I}_{K}} \end{array} \right\},$$

Single gadaline

MISO

Single adaline approximation

Single adaline approximation

target function $o = f(x_1, x_2)$ $= \cos(x_1 + 2x_2)$ Noisy Sample

Approximation by single perceptron

Single gadaline approximation

Function Composition

w=[1 2] cos(h)

Single gadaline

MISO

Approximating function $o = g(\mathbf{s}; \mathbf{w}, \mathbf{c}, \mathbf{r})$ $h = \mathbf{s}^T \mathbf{w}$ $\boldsymbol{\delta} = \theta_K(h; \mathbf{c})$ $o = \boldsymbol{\delta}^T \mathbf{r}$

Pots-nonlinear mixtures

Gadaline network

Gadaline network

Gadaline network for demixing

Goal

- {x_i[t]}_t denotes observations from an output channel
- Given multi-channel observations, find independent sources and network parameters
- Outputs of learning gadalines
 Independent sources {y_i[t]}_t
 Network parameters

PNLICA (IJCNN 2007)

- 1. Input multi-channel observations
- 2. Set independent components to given observations
- 3. For each y_i
 - a. Train the ith gadaline
 - b. Use the approximating error to refine y_i
- 4. Schedule a temperature-like parameter to emulate physical annealing
- 5. Goto step 3 until a halting holds

Leave-one-out approximation

independent components

Strategy of leave-one-out approximation

Step 3

- For a selected channel, the dominant independent component is assumed absent to contribute its correspondent observations
- The dominant component is refined to compensate for the error of approximating the selected channel in terms of the remaining independent components

Lineare gadaline

Step 3b $\phi(z) = \sum_{k=1}^{K} v_k[t]c_k,$

$$\begin{cases} u_k[t] = (z - c_k)^2\\ v_k[t] = \frac{\exp(-\beta u_k[t])}{\sum\limits_{l=1}^{K} \exp(-\beta u_l[t])} \end{cases}$$

Numerical simulations

Independent sources

Multi-channel observations

Linear mixtures of five independent sources

Recovered independent components

Leave-one-out linear gadaline approximation

Independent sources

Multi-channel observations

PNL functions: hyper-tangent functions

Derived PNL functions

Leave-one-out gadaline approximation

Independent components

Leave-one-out gadaline approximation

Conclusions

- Leave-one-out gadaline approximation has been shown effective for linear ICA and potential for post-nonlinear ICA.
- PNL ICA is translated to concurrent estimation of the gadaline network and independent components.
 - The idea is simple but its implementation needs accurate and reliable collective decisions to optimize tremendous discrete and continuous unknowns.
 - Interactive dynamics derived for leave-one-out gadaline approximation executed under the mean field annealing process are potential to fit the computation requirement.

Conclusions

- Effective PNLICA could extend application domain of blind separation
 - Traditional linear ICA algorithms are impractical for blind separation of PNL mixtures of independent sources.
 - The PNL mixture assumption which is more general for modeling formation emulation of real world signals than the linear mixture assumption.
- Properties of leave-one-out gadaline approximation
 - The proposed learning method translates PNLICA to individual sub-tasks of single gadaline optimization
 - The learning process operates under the mean field annealing process to pursuit for accurate neural computations.
 - Its derivation involves without complicate statistical criteria, such as the Kurtosis or Kullback Leibler divergence, for measuring statistical dependency of multivariates that are PNL mixtures of independent sources.

Conclusions

- Under the PNL mixture assumption, effective reduction of statistical dependency of independent components through direct minimization of the KL divergence is a complicate task that is still challenging researchers in the field of neural networks for nonlinear independent component analysis.
- Application of PNLICA to blind separation of real world signals
 - □ Electrocardiograms(ECG)
 - Electroencephalograms(EEG)
 - Event related potential(ERP)
 - Magnetic resonance images(MRI)

Reference

- Jiann-Ming Wu & Chiu, Independent component analysis using Potts models, IEEE Trans. On Neural Networks, Vol. 12, No. 2, March (2001)
- Jiann-Ming Wu, M.H. Chen, Lin Z.H., Independent component analysis based on marginal density estimation using weighted Parzen windows, revised for Neural Networks, 2005/11
- Jiann-Ming Wu, Z. H. Lin, and P. H. Hsu, Function approximation using generalized adalines, IEEE Trans. Neural Networks., vol. 17, no. 3, pp. 541-558, May 2006.
- Jiann-Ming Wu, Yi-Cyun Yang, Nonlinear independent component analysis by learning generalized adalines, accepted by IJCNN 2007.

PART II

Learning gadalines for demixing

Gadaline network for demixing

K-state transfer function

$$\theta_{3}(x;h) = [1,0,0] = \mathbf{e}_{1}^{3} \text{ if } h \in I_{1}$$
$$= [0,1,0] = \mathbf{e}_{2}^{3} \text{ if } h \in I_{2}$$
$$= [0,0,1] = \mathbf{e}_{3}^{3} \text{ if } h \in I_{3}$$

$$\theta_{K}(h; \mathbf{c}) = \left\{ \begin{array}{l} \mathbf{e_{1}^{K} \text{ if } \mathbf{h} \in \mathbf{I}_{1}} \\ \vdots \\ \mathbf{e_{i}^{K} \text{ if } \mathbf{h} \in \mathbf{I}_{i}} \\ \vdots \\ \mathbf{e_{K}^{K} \text{ if } \mathbf{h} \in \mathbf{I}_{K}} \end{array} \right\},$$

Inverse function

 $\boldsymbol{\delta} = \boldsymbol{\theta}_{K}(o; \mathbf{c})$ $\boldsymbol{\delta} \text{ is a unitary vector}$ $\boldsymbol{z} = \mathbf{r}^{T} \boldsymbol{\delta}$

Multiple inverse functions

 $\boldsymbol{\delta}_{i}[t] = \theta_{K}(o[t]; \mathbf{c}_{i})$ $\boldsymbol{\delta}_{i}[t] \text{ is a unitary vector}$ $z_{i}[t] = \mathbf{r}_{i}^{T} \boldsymbol{\delta}_{i}[t]$ $\mathbf{z}[t] = (z_{1}[t], ..., z_{d}[t])^{T}$

Math framework

$$E = \frac{1}{2} \sum_{t} \sum_{i} \sum_{k} \delta_{ik}[t] \| o_i[t] - c_k \|^2$$
$$H = E + L$$

$\mathbf{x}[t]$ in L is replaced with $\mathbf{z}[t]$

Math programming for minimization of KL divergence

$$L(\xi, \mathbf{W}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \xi_{ik}[t] |\mathbf{w}_{i}\mathbf{x}[t] - h_{k}|^{2}$$
$$- c \log |\det(\mathbf{W})|$$
$$- \frac{c}{T} \sum_{k=1}^{K} \sum_{t=1}^{T} \zeta_{ik}[t] \ln \left(\sum_{t=1}^{T} \zeta_{ik}[t] \right)$$
$$\sum_{k=1}^{K} \xi_{ik}[t] = 1 \quad \text{for all } i, t,$$
$$\xi_{ik}[t] \in \{0, 1\} \quad \text{for all } i, k, t.$$

Hopfield-like energy function

Hopfield-like energy function:

$$L(\xi, \mathbf{W}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \xi_{ik}[t] |\mathbf{w}_{i}\mathbf{x}[t] - h_{k}|^{2}$$
$$- c \log |\det(\mathbf{W})|$$
$$- \frac{c}{T} \sum_{k=1}^{K} \sum_{t=1}^{T} \xi_{ik}[t] \ln \left(\sum_{t=1}^{T} \xi_{ik}[t]\right)$$