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Multi-channel observations

Maternal ECG



Independent sources

PottsNICA (Wu & Chiu 2001;Wu 2007)

Fetal ECG



Multi-channel observations
ERP
SALK Institute
(Makeig et al,1997 )
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Independent components of ERP
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ICA of mixed facial images
(Wu et al,2005)



KL divergence

Our previous works are based on 
minimization of Kullback-Leibler
divergence.
The KL divergence is a typical measure for 
statistical dependency between retrieved 
components



Pots-nonlinear mixtures
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Model parameters

Linear mixing matrix A
Post-nonlinear functions
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PNL ICA

Given multi-channel observations, PNL 
ICA aims to recover independent sources
The by-product includes an estimation to 
model parameters



Gadalines

Adalines (Widrow, 1962)
Generalized adalines

Jiann-Ming Wu, Zheng-Han Lin, and Pei-Hsun
Hsu
IEEE Trans. on Neural Networks, 2006)



Multiple inputs single output(MISO)

Adaline
Threshold PNL
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Two-state transfer function

Threshold function
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Triple state transfer function

Threshold function
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K-state transfer function
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Single gadaline
MISO
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Single adaline approximation
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Single adaline approximation
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Single gadaline approximation
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Function Composition
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Single gadaline

MISO
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Pots-nonlinear mixtures
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Gadaline network
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Gadaline network
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Gadaline network for demixing
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Goal

{xi[t]}t denotes observations from an output 
channel
Given multi-channel observations, find 
independent sources and network 
parameters
Outputs of learning gadalines

Independent sources {yi[t]}t

Network parameters



PNLICA (IJCNN 2007)
1. Input multi-channel observations
2. Set independent components to given 

observations
3. For each yi

a. Train the ith gadaline
Approximate xi using current independent components 
other than yi

b. Use the approximating error to refine yi

4. Schedule a temperature-like parameter to 
emulate physical annealing

5. Goto step 3 until a halting holds



Leave-one-out approximation
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Strategy of leave-one-out 
approximation

Step 3
For a selected channel, the dominant independent 
component is assumed absent to contribute its 
correspondent observations
The dominant component is refined to compensate 
for the error of approximating the selected channel in 
terms of the remaining independent components



Linear ICA
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Numerical simulations

Independent sources



Multi-channel observations

Linear mixtures of five independent sources



Recovered independent 
components

Leave-one-out linear gadaline approximation



Independent sources



Multi-channel observations

PNL functions: hyper-tangent functions



Derived PNL functions

Leave-one-out gadaline approximation



Independent components

Leave-one-out gadaline approximation



Conclusions
Leave-one-out gadaline approximation has been shown effective for 
linear ICA and potential for post-nonlinear ICA.
PNL ICA is translated to concurrent estimation of the gadaline
network and independent components. 

The idea is simple but its implementation needs accurate and 
reliable collective decisions to optimize tremendous discrete and 
continuous unknowns. 
Interactive dynamics derived for leave-one-out gadaline
approximation executed under the mean field annealing process 
are potential to fit  the computation requirement.



Conclusions
Effective PNLICA could extend application domain of blind 
separation

Traditional linear ICA algorithms are impractical for blind 
separation of PNL mixtures of independent sources. 
The PNL mixture assumption which is more general for modeling 
formation emulation of real world signals than the linear mixture 
assumption. 

Properties of leave-one-out gadaline approximation
The proposed learning method translates PNLICA to individual 
sub-tasks of single gadaline optimization
The learning process operates under the mean field annealing 
process to pursuit for accurate neural computations. 
Its derivation involves without complicate statistical criteria, such 
as the Kurtosis or Kullback Leibler divergence, for measuring 
statistical dependency of multivariates that are PNL mixtures of 
independent sources.



Conclusions
Under the PNL mixture assumption, effective reduction of statistical 
dependency of independent components through direct minimization
of the KL divergence is a complicate task that is still challenging 
researchers in the field of neural networks for nonlinear independent 
component analysis. 
Application of PNLICA to blind separation of real world signals

Electrocardiograms(ECG) 
Electroencephalograms(EEG)
Event related potential(ERP)
Magnetic resonance images(MRI)
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PART II

Learning gadalines for demixing



Gadaline network for demixing
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K-state transfer function
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Multiple inverse functions
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Math framework
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Math programming for 
minimization of KL divergence



Hopfield-like energy function


