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Natural discriminant analysis based on interactive Potts models is devel-
oped in this work. A generative model composed of piece-wise multi-
variate gaussian distributions is used to characterize the input space, ex-
ploring the embedded clustering and mixing structures and developing
proper internal representations of input parameters. The maximization
of a log-likelihood function measuring the �tness of all input parameters
to the generative model, and the minimization of a design cost summing
up square errors between posterior outputs and desired outputs consti-
tutes a mathematical framework for discriminant analysis. We apply a
hybrid of the mean-�eld annealing and the gradient-descent methods to
the optimization of this framework and obtain multiple sets of interactive
dynamics, which realize coupled Potts models for discriminant analysis.
The new learning process is a whole process of component analysis, clus-
tering analysis, and labeling analysis. Its major improvement compared
to the radial basis function and the support vector machine is described
by using some arti�cial examples and a real-world application to breast
cancer diagnosis.

1 Introduction

The taskof discriminant analysis (Hastie & Simard 1998;Hastie & Tibshirani
1996; Hastie, Tibshirani, & Buja, 1994; Hastie, Buja, & Tibshirani, 1995) aims
to achieve a mapping function from a parameter space Rd to a set of discrete
and nonordered output labelsS subject to interpolating conditions proposed
by training samples f(xi, qi), 1 5 i 5 N, xi 2 Rd, qi 2 Sg. S is represented by
feM

1 , eM
2 , . . . , eM

Mg for the discrete and nonordered property of output labels,
where M denotes the number of categories and eM

m is a unitary vector of
M elements with only the mth bit one. The category of an item is predicted
by d measurements of features x 2 Rd. The following design cost quanti-
tatively measures the �tness of all training samples to a mapping function
g: Rd ! S,

D D
X

1 i N

L(g(xi), qi ), (1.1)

Neural Computation 14, 689–713 (2002) c° 2002 Massachusetts Institute of Technology



690 Jiann-Ming Wu

where L(¢) denotes an arbitrary distance between two unitary vectors. A
mapping function absolutely minimizing the design cost automatically sat-
is�es all interpolating conditions proposed by training samples; however,
such a mapping function can be obtained by simply recording all samples in
a look-up table. It is not the purpose of supervised learning, since without
any other objective, a learning process subject only to the design cost is an
ill-posed problem. Coming from a future validation by testing samples, the
generalization cost proposes another essential criterion. Both the trainingset
and the testing set are assumed to have the same underlying input-output
relation. An effective supervised learning process is expected to minimize
the design cost as well as the generalization cost. The minimization of this
generalization cost has been considered as the reduction of model size in the
�eld of statistics (Hastie & Simard, 1998; Hastie & Tibshirani, 1996; Hastie
et al., 1994, 1995), which is used for maximal generalization in this work.

The derivation of our new learning process starts with a generative
model responsible for characterizing the parameter space on the basis of
a nonoverlapping partition. Assume that there exist K internal regions
Vk, 1 5 k 5 K, in the partition; each region Vk is centered at yk and is
de�ned by Vk D fx| arg minj kx ¡ yjkAk D k, x 2 Rdg, where kxkA denotes the
Mahalanobis distance of

p
x0 Ax. The local distribution of the input param-

eter in each region Vk is modeled by a multivariate gaussian distribution
with a mean vector at the center yk and a covariance matrix Ak. As a special
case, all local generative models are assumed to have the same covariance
A in this work to facilitate our presentations. The kernels fykg partition the
space Rd into K nonoverlapping subspaces with the property of

S
k Vk D Rd

and Vk1

T
Vk2 D ; for all k1 6D k2. The �tness of all parameters in each inter-

nal region Vk to the corresponding local generative model is quantitatively
measured by a log-likelihood function. In this work, the supervised learn-
ing process for discriminant analysis is a process of maximizing the sum of
all log-likelihood functions and minimizing the design cost.

This work insists on solving the task of discriminant analysis by col-
lective decisions performed by the architecture of neural networks. The
formulation of the above two objectives involves two kinds of variables:
discrete combinatorial variables and continuous geometrical variables. The
resulting optimization framework is a mixed integer and linear program-
ming, of which the optimization is dif�cult for the gradient-descent method
due to numerous shallow local minimum within the corresponding energy
function. The Potts encoding, which possesses �exibility in internal repre-
sentations and reliability in collective decisions, is employed to deal with
this computational dif�culty. The Potts encoding is suitable for the design
of neural networks and has been applied to fundamental complex tasks,
including combinatorial optimizations (Peterson & Söderberg, 1989), self-
organization (Liou & Wu, 1996; Rose, Gurewitz, & Fox, 1990, 1993), classi-
�cation, and regression (Rao, Miller, Rose, & Gersho, 1999). The multistate
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Potts neuron, generalized from the two-state spin neuron, is used to reduce
the search space of feasible con�gurations and realize the problem mod-
eling for effective internal representations. In this work, the combinatorial
internal representations include the assignment of each input parameter xi
to one and only one internal region, denoted by the membership vector
di 2 feK

1 , . . . , eK
Kg, and the dynamical assignment of each region Vk to one

output label, denoted by the category response jk 2 feM
1 , . . . , eM

Mg. Each di
or jk is considered as the discrete Potts neural variable. The continuous
geometrical variables include the kernels fykg and the common covariance
matrix A. By these representations, the maximization of the sum of all log-
likelihood functions, each measuring the �nesse of the corresponding local
generative model, and the minimization of the design cost together form
a mixed integer and linear programming and lead to a novel energy func-
tion for discriminant analysis. All these variables—fdig, fjkg, fykg, and A—
are collectively optimized by a hybrid of the mean-�eld annealing and the
gradient-descent method toward the minimization of the energy function.
The resulting learning process consists of four sets of interactive dynamics
characterizing the coupled Potts models of discriminant analysis.

The evolution of the four sets of interactive dynamics is well controlled
by an annealing process for the minimization of the energy function. The
annealing process is analogous to physical annealing, which is a process
of gradually and carefully scaling the temperature from a suf�ciently large
scale to a small one. At each temperature, the mean con�guration of the
whole system is a balancing result of trading off minimizing the mean
energy against maximizing the entropy. When this process is used, mean
activations of a Potts neuron, indicating probabilities of active states, are
increasingly in�uenced by injected mean �elds. At the beginning, mean ac-
tivations are independent of injected mean �elds; the system is ruled over
by the principle of maximal entropy; a Potts neuron has almost the same
probability of activating each of its states. As the process progresses, the
symmetry is broken; each Potts neuron has a decreasing degree of freedom;
the mean con�guration of the system is increasingly dominated by the ten-
dency toward the minimal mean energy and decreasingly by the criterion
of maximal entropy. Toward the end of the process, the mean con�guration
is totally controlled by the force of minimal mean energy; mean activations
of a Potts neuron behave winner-take-all. The Potts encoding has been ap-
plied to model collective decisions (Liou & Wu, 1996; Peterson & Söderberg,
1989). Its applicability to the task of discriminant analysis is explored in this
work.

1.1 The Learning Network. The learning process is composed of four
sets of interactive dynamics, which constitute the coupled Potts model in
architecture. Thecoupled Potts model isa modular recurrent neural network
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Figure 1: The learning network is composed of four interactive dynamics and
the interconnection network.

for supervised learning. As shown in Figure 1, the coupled Potts model
consists of four interactive modules, of which two are Potts neural networks
calculating the mean hdi and hj i of combinatorial variables fdig and fjkg,
respectively, and the others are linear networks for updating kernels fykg
and the covariance matrix A. Four interactive modules communicate with
each other through interconnection networks. The same learning network
has appeared in implementing the recurrent backpropagation (Pineda, 1987,
1989) with two modules.

1.2 The Discriminant Network. The discriminant network derived by
the new learning process is closely related to a network of multilayer per-
ceptrons (MLP) (Rumelhart & McClelland, 1986; Pineda, 1987, 1989) and
radial basis functions (RBF) (Benaim, 1994; Freeman & Saad, 1995; Girosi,
Jones, & Poggio, 1995; Girosi, 1998; Moody & Darken, 1989). It is a network
of normalized radial basis functions (RBFs) with generalized hidden units.
The hidden units of a normalized RBF network (Moody & Darken, 1989)
use a normalized gaussian activation function,

GI
k (x) D exp(

®®x ¡ yk
®®2 /2s2)P

j exp(
®®x ¡ yj

®®2 /2s2)
, (1.2)
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with a scalar variance s2. The hidden units of the current recognizing net-
work have a normalized multivariate gaussian activation function,

GA
k (x) D exp(¡b (x ¡ yk)0A(x ¡ yk))P

j exp(¡b (x ¡ yj)0A(x ¡ yj))
, (1.3)

where A is a covariance matrix and b is the inverse of an arti�cial tem-
perature used in the annealing process. By normalization, we mean thatP

j GA
j (x) D 1 for any x. GI

k (x) is a special case of GA
k (x), whereas the func-

tion GA
k (x) can be translated to the form of GI

k (z) if one rewrites the term
(x¡yk)0A(x¡yk) as (z¡zk)0 (z¡zk) with zk D Byk and z D Bx, where B

0
B D A.

By this translation, the function GA
k (x) is decomposed as the combination of

z D Bx and GI
k (z). The current recognizing network is exactly the composi-

tion of a linear transformation and a normalized RBF network. The learning
process derived in this workcan be directly applied to a normalized RBF net-
work by �xing the covariance matrix as I, and it is also applicable to an MLP
network based on the connection (Girosi et al., 1995; Girosi, 1998) between
a normalized RBF network and an MLP network. Practical experiments
(Miller & Uyar, 1998) have shown the gradient-descent-based learning algo-
rithms, including the backpropagation algorithm for an MLP network and
the learning algorithm (Moody & Darken, 1988, 1989) for an RBF network,
suffering at the trap of tremendous local minima in optimizing their inter-
nal representations. Based on a hybrid of the mean-�eld annealing and the
gradient-descent method, the new learning process proposed in this work
is essential for developing effective nonlinear boundaries, well optimizing
the internal representation for the parameter space of a real application.

The normalized multivariate gaussian activation function in equation 1.3
de�nes an overlapping partition into the parameter space, where the over-
lapping degree is modulated by the b parameter, indirectly by the anneal-
ing process. We consider the function GA

k (x) as the projection probability
of assigning an input parameter x to an internal region Vk. For an input
parameter x, all its projection probabilities fGA

k (x), 1 5 k 5 Kg characterize
different partition phases; at a suf�ciently low b , they are nearly identical
to 1

K , denoting a complete overlapping partition. As the b value increases,
they become asymmetric for some degree of overlapping partition. To a
suf�ciently large b , they behave winner-take-all, such that the only winner
GA

k¤ (x) is one and the others are zero, where k¤ D arg mink kx ¡ ykkA. If
each region Vk is equipped with an optimal category response jk, based
on the above projection mechanism, the mapping function of the current
recognizing network is

g (x) D
X

k

GA
k (x)jk. (1.4)
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This discriminant function at a suf�ciently large b is similar to the nearest
prototype classi�er, but with a generalized distance measure k ¢ kA,

g (x) D jk¤ , (1.5)

k¤ D arg min
k

®®x ¡ yk
®®

A ,

and can be further translated to a composition of

g(z) D jk¤ (1.6)

k¤ D arg min
k

kz ¡ zkk

and z D Bx, (1.7)

where zk D Byk and A D B0B. If A D I, the latter form exactly de�nes
the nearest prototype classi�er (Rao et al., 1999), of which the measure is
the Euclidean distance. The partition of fzkg into the parameter space is
nonoverlapping, and each internal region is attached with its own category
response. The nearest prototype classi�er is known to be suitable for the
case with statistically independent components, but for most real applica-
tions, this assumption is not valid, so a preprocessor for feature extraction
like the above linear transformation, z D Bx, is usually additionally em-
ployed. But the development of a preprocessor, such as using independent
component analysis (Lin, Grier, & Cowan, 1997; Makeig, Jung, & Bell, 1997)
or principal component analysis, is independent of the formation of a classi-
�er; the combined discriminant function may suffer from the inconsistency
between the extracted feature and the classi�er. Alternatively, based on the
Mahalanobis distance, the new learning process in this work focuses on
the mapping function in equation 1.5 and directly explores the whole dis-
criminant process of component analysis, clustering analysis, and labeling
analysis.

In the next section, we introduce the generative model for characterizing
the parameter space and derive a mathematical framework for discriminant
analysis. Four sets of interactive dynamics and the coupled Potts model are
developed in section 3. Another issue in this work is incremental learning,
a procedure for determining the optimal number of internal regions or the
minimal model size for maximal generalization. The incremental learning
scheme is introduced insection 4. In the �nal section,we test thenew method
in comparisons with RBF (Muller et al., 1999;Ratsch, Onoda, & Muller, 2001)
and the support vector machine (Vapnik, 1995; Platt, 1999; Cawley, 2000) us-
ing arti�cial examples and a real-world application to breast cancer diagno-
sis (Wolberg & Mangasarian, 1990; Malini Lamego, 2001), and discussions
about simulation results are described.
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2 Supervised Learning for Discriminant Analysis

2.1 The Generative Model. The generative model for a parameter space
Rd is composed of K piece-wise multivariate normal distributions. Each is
of

pk (x) D 1

(2p )
d
2

q��A¡1
�� exp

�
¡1

2
(x ¡ yk)0A(x ¡ yk)

´
(2.1)

centered at the vector yk with a nonsingular covariance matrix A. The K
distributions have been assumed to have the same covariance matrix. These
kernels fykg form K internal regions fVkg in the parameter space, which are
nonoverlapping, such as

S
k Vk D Rd and Vk1

T
Vk2 D ; for all k1 6D k2. For

each internal region Vk, the �tness of pk (x) to all input parameters xi 2 Vk
is measured proportional to the following log-likelihood function:

lk D log
Y

xi2Vk

pk (xi). (2.2)

A summation of all lk leads to the following function:

l D
X

k

lk

D
X

k

log
Y

xi2Vk

pk (xi)

D
X

k

X
xi2Vk

log pk (xi). (2.3)

Recall that the assignment of each input xi to one of K internal regions has
been represented by a membership vector di, of which each element dik is
either one or zero and

P
k dik D 1. The function l can be rewritten as

l D
X

i

X
k

dik log pk (xi)

D ¡1
2

X
i

X
k

dik (xi ¡ yk)0A(xi ¡ yk)

¡N
2

log det(A¡1) ¡ Nd
2

log(2p ), (2.4)

where det(¢) denotes the determinant of a matrix. By the fact det(A¡1) D
¡ det(A) and neglecting the last constant term, we obtain the following
objective:

E1 D 1
2

X
i

X
k

dik (xi ¡ yk)0A(xi ¡ yk) ¡ N
2

log det(A). (2.5)

Maximizing the function l is equivalent to minimizing the function E1.
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2.2 A Mathematical Framework. Recall that each region Vk has been
attached with a category response jk 2 feM

1 , . . . , eM
Mg for classi�cation. The

design cost in equation 1.1 can be expressed as

E2 D 1
2

X
i

| |qi ¡
X

k

dikjk| |
2 (2.6)

D 1
2

X
i

| |qi ¡ Ldi | |2,

where the matrix L D [j1, . . . , jk, . . . , jK]. By combining the two objectives
of equations 2.5 and 2.6 and injecting all constraints, we have the following
mathematical framework for discriminant analysis.

Minimize

E (d, j , y, A) D E1 C cE2 (2.7)

D 1
2

X
i

X
k

dik (xi ¡ yk)0A(xi ¡ yk)

¡ N
2

log det(A) C c
2

X
i

| |qi ¡ Ldi | |2, (2.8)

subject to

dik 2 f0, 1g, for all i, kX
k

dik D 1, for all i

jkm 2 f0, 1g, for all k, m (2.9)X
m

dkm D 1, for all k,

where d,j , and y denote collections of fdig, fjkg, and fykg respectively, and c is
a weighting constant. The learning process for discriminant analysis turns
to search for a set of d, j , y, and A, which minimize the weighted sum of
the negative log-likelihood function and the design cost subject to a set of
constraints as in equation 2.9. We consider the mathematical framework in
equations 2.8 and 2.9 as a mixed integer and linear programming, of which
fykg and A are continuous geometrical variables and fdig and fjkg are discrete
combinatorial variables. In the following section, we employ a hybrid of the
mean-�eld annealing and gradient-descent methods to the optimization of
all these variables simultaneously.

3 Interactive Dynamics and Coupled Potts Models

A hybrid of the mean-�eld annealing and the gradient-descent methods is
applied to the above mixed integer and linear programming. As a result,
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four sets of interactive dynamics are developed for the variables A, fykg,
fdig, and fjkg, respectively. These dynamics interact following an analogous
process of the physical annealing and perform a parallel and distributed
learning process for discriminant analysis.

When we relate each vector di or jk to a Potts neuron, the two unitary
constraints in equation 2.9 are subsequently taken over by the normaliza-
tion of the Potts activation function. The above mathematical framework is
reduced to the minimization of the energy function E. By �xing the matrix A
and fykg, the mean-�eld annealing traces the mean con�guration < d > and
< j > , emulating thermal equilibrium at each temperature. It follows that
the probability of the system con�guration is proportional to the Boltzmann
distribution:

Pr(d, j ) / exp(¡bE(d, j )). (3.1)

Following the annealing process to a suf�ciently large b value, the Boltz-
mann distribution is ultimately dominated by the optimal con�guration,

lim
b!1 Pr(d¤, j ¤) D 1,

where

E(d¤, j ¤) D min
d,j

E (d, j ).

The annealing process gradually increases the parameter b from a suf�-
ciently low value to a large one. At each b value, the process iteratively
executes the mean-�eld equations to a stationary point, which represents
the mean con�guration for thermal equilibrium. The obtained mean con�g-
uration at each b value is used as the initial con�guration for the process at
its subsequent b value. The mean-�eld equation can be derived from the fol-
lowing free energy function, which is similar to that proposed by Peterson
and Söderberg (1989),

Y (y, A, hdi , hj i , v, u)

D E(y, A, hdi , hj i) C
X

i

X
k

hdiki vik C
X

k

X
m

hjkmi ukm (3.2)

¡ 1
b

X
i

ln

�X
k

exp(bvik)

´
¡ 1

b

X
k

ln

�X
m

exp(bukm)

´
, (3.3)

where hdi, hj i, u, and v denote fdig, fjkg, fukmg, and fvikg, respectively, and ui
and vk are auxiliary vectors. When �xing y, A and b , a saddle point of the
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free energy satis�es the following condition:

@Y

@ hdii D 0,
@Y

@vi
D 0, for all i

@Y

@ hjki D 0,
@Y

@uk
D 0, for all k.

These lead to two sets of mean-�eld equations in the following vector form:

vi D ¡@E(y, A, hdi , hj i)
@ hdii (3.4)

D ¡1
2

(xi ¡ yk)0A(xi ¡ yk) ¡ cL 0 (qi ¡ Ldi)

hdii D
µ

exp(bvi1)P
h exp(bvih)

, . . . ,
exp(bviK)P
h exp(bvih)

¶0
(3.5)

uk D ¡@E(y, A, hdi , hj i)
@ hjki (3.6)

D c
X

i
hdiki (qi ¡ L hdii)

hjki D
µ

exp(buk1)P
m exp(bukm)

, . . . ,
exp(bukM)P
m exp(bukm)

¶0
. (3.7)

During the stage of evaluating the mean con�guration at each b value, the
matrix A and the kernels fykg are considered constants. Once determined,
the mean con�guration feeds back to the adaptation of the covariance matrix
and the kernels. By applying the gradient-descent method to the free energy,
we have the following updating rule for each element Amn in the matrix A:

4Amn / ¡ @Y

@Amn

D ¡ @E
@Amn

D ¡1
2

X
i

X
k

hdiki (xim ¡ ykm)(xin ¡ ykn) C N
2

[(A0)¡1]mn. (3.8)

When all 4Amn D 0, we have

A D (W¡1)0 , (3.9)
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where

Wmn D 1
N

X
i

X
k

hdiki (xim ¡ ykm) (xin ¡ ykn). (3.10)

The adaption of the kernels fykg is also derived by the gradient-descent
method:

4yk / ¡@Y

@yk
(3.11)

D 1
2

X
i

hdiki (A C A0 ) (xi ¡ yk).

Again, when 4yk D 0, we have

yk D
P

i hdiki xiP
i hdiki . (3.12)

Now we conclude the new learning process for discriminant analysis as
follows:

1. Set a suf�ciently low b value, each kernel yk near the mean of all
predictors and each hdiki near 1

K and hjkmi near 1
M .

2. Iteratively update all hdiki and vik by equations 3.4 and 3.5, respectively,
to a stationary point.

3. Iteratively update each hjkmi and ukm by equations 3.6 and 3.7, respec-
tively, to a stationary point.

4. Update each yi by equation 3.12.

5. Update A by equations 3.9 and 3.10.

6. If
P

ikhdiki2 and
P

kmhjkmi2 are larger than a prior threshold, then halt;
otherwise increase b by an annealing schedule and go to step 2.

The convergence of the algorithm is well guaranteed. For steps 2 and 3,
two sets of mean-�eld equations de�ne a stationary point of the free energy,
equation 3.2. For steps 4 and 5, since all fhdikig and fhjkmig are �xed, the
change Dy of the free energy, equation 3.2, due to the change Dyk and
D Amn has the nonincreasing property supported by the gradient-descent
method. A mathematical treatment to the convergence property is given
in the appendix. The two sets of mean-�eld equations, 3.4–3.5 and 3.6–3.7,
constitute two interactive Potts models. The learning network for the whole
learning process is shown in Figure 1.
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4 Incremental Learning for Optimal Model Size

An incremental learning procedure is developed for the interactive Potts
models to optimize the model size subject to the criterion of minimal de-
sign cost. The model size indicates the number of kernels. According to the
learning process in the last section, when the annealing process halts with
a suf�ciently large b , each individual mean hdiki or hjkmi is close to either
one or zero and the two square sums of mean activations are larger than the
predetermined threshold. The variables fhdikig and fhjkmig are �rst recorded
by temporal variables fd¤

ikg, fj ¤
kmg, respectively, to establish an intermediate

recognizing network with kernels fykg and the matrix A. Whether the model
size of this intermediate recognizing network, which is the size of fykg, is suf-
�cient depends on the quantity of the design cost

P
i | |qi ¡P

kj ¤
k d¤

ik| |
2, which

denotes the number of errors of predicting all training samples. De�ne the
hit ratio r as 1 ¡ 1

N Sikqi ¡P
k j ¤

kd¤
ikk2. If the hit ratio is not acceptable, such as

r < h and h D 0.98, it is conjectured that the underlying boundary structure
for well-discriminating training samples overloads the partition formed by
the kernels fykg and the covariance matrix A. The incremental learning pro-
cedure aims to improve this hit ratio r by properly increasing the model
size and adapting the boundary structure. De�ne the local hit ratio rk as
1¡ 1

Nk

P
i d

¤
ikkqi ¡j ¤

k k for each internal region Vk D fx|k D arg minj kx¡yjkAg,
where Nk denotes the size of the set fxi 2 Vkg. A set of underestimated in-
ternal regions, each having an unacceptable local hit ratio, such as rk < h , is
then picked out and their kernels are duplicated. The duplication involves
the variation of the original coupled Potts model in organization.

The idea of divide-and-conquer tends to invoke a subtask for each un-
derestimated region and then deal with each subtask independently. This
is not the best choice, since it loses the point of global optimization of the
boundary structure for discriminant analysis. Alternatively, the incremen-
tal learning procedure makes use of collective decisions of interactive Potts
models. The kernel yk of an underestimated internal region, such as rk < h ,
is duplicated with small perturbation to produce its twin kernel denoted
by y¤

k . A set of new kernels fynew
k g is created to be the union of fykg and fy¤

k |
rk < hg, having the model size of K C K¤, where K and K¤, respectively,
denote the number of the original kernels and that of the underestimated
internal regions. In the new set, let the index of yk be still k and that of y¤

k
be denoted by k0 . For each input parameter xi, assuming xi 2 V (yk), a new
membership vector dnew

i , now with K C K¤ element, is created as follows:

dnew
i D eKCK¤

k if rk ¸ h

D 1
2

±
eKCK¤
k C eKCK¤

k0

²
otherwise.

In the second line of the above equation, the new vector dnew
i means that xi

has the same probability 1
2 of being mapped to each of the twins, ynew

k and
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ynew
k0 . Create new category responses fj new

k g for the new kernels fynew
k g, and set

each element ofj new
k near 1

M . After duplication and replacing all means with
new vectors fdnew

i g, fj new
k , 1 5 k 5 KCK¤g and kernels with fynew

k g, the system
variables include fyk, 1 5 k 5 K C K¤g, fhdiig and fhjki, 1 5 k 5 K C K¤g.
Note that now each hdii contains K C K¤ elements. Return to the annealing
process. The b value has been increased to a suf�ciently large one, where the
two sums

P
(d¤

ik)
2 and

P
(j ¤

km)2 are larger than the predetermined halting
threshold, but these system variables after duplication no more satisfy the
halting condition. The b value can be further increased to continue the
annealing process. We conclude the incremental learning process as follows
for the interactive Potts models:

1. Set a suf�ciently low b value, a threshold h , and an initial model size
K. Set each kernel yk near the mean of all predictors, each hdiki near 1

K ,
and hjkmi near 1

M .

2. Iteratively update all hdiki and vik by equations 3.4 and 3.5, respectively,
to a stationary point.

3. Iteratively update each hjkmi and ukm by equations 3.6 and 3.7, respec-
tively to a stationary point.

4. Update each yi by equation 3.12.

5. Update A by equations 3.9 and 3.10.

6. If
P

ikhdiki2 and
P

kmhjkmi2 are larger than a prior threshold, such as
0.98, then go to step 7. Otherwise, increase b by an annealing schedule,
and then go to step 2.

7. Record fhdiig, fhjkig by temporal variables fd¤
i g, fj ¤

k g, respectively.

8. Determine r and all rk using A, fykg, fd¤
i g, fj ¤

k g.
9. If r > h , halt. Otherwise, duplicate the kernels of K¤ underestimated

regions with small perturbation and create new variables fynw
k g, fdnew

i g,
fj new

k g using fykg, fy¤
k |rk < hg, fd¤

i g, fj ¤
k g, as described in the text.

10. K Ã K C K¤. Decrease b with a small constant, and replace fykg, fhdiig,
and fhjkig with fynew

k g, fdnew
i g, and fj new

k g respectively, and go to step 2.

5 Numerical Simulations and Discussion

The incremental learning process in section 4 has been implemented in
Matlab codes and is referred to as PottsDA in the following context.

5.1 Examples. We �rst test the new method (PottsDA) in comparisons
with the RBF and support vector machine (SVM) methods (Vapnik, 1995)
using some arti�cial examples. In our simulations, the b parameter of the
PottsDA is initialized as 1

3.8 , and each annealing process increases it to a
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value of b
0.98 I the weighting constant is c D 4.5. Theoretical derivations

of the weighting constant c and the initial b parameter can further refer
to Aiyer, Niranjan, and Fallside (1990) and Peterson and Söderberg (1989),
respectively.TheMatlab package used for theRBF (Muller et al., 1999;Ratsch
et al., 2001) isprovided inRatsch et al. (2001),where thecenters are initialized
with k-means clustering. For the SVM (Vapnik, 1995), the Matlab package
is provided in Cawley (2000), and the corresponding learning method is
of sequential minimal optimization (Platt, 1999). In this section, the three
methods are executed �ve times for each example. Their average error rates
for training and testing are reported.

The input parameters in the �rst example are generated by a linear mix-
ture, x(t) D Hs(t), where s(t) D [s1 (t) s2 (t)]0 denotes time-varying samples
from two independently uniform distributions within [¡.05, 0.5], and

H D
"

0.4384 ¡0.8988
¡0.8493 0.5279

#

is a randomly generated mixing matrix. The desired output of each input
parameter is determined by the rule q(t) D sign(s1 (t))¤sign(s2 (t)). We use the
same process to generate 1600 samples and split them into two equal sets—
one for training and the other for testing. In Figure 2, the position of each
input parameter in the training set is marked with a blackorgray dot, which,
respectively, denote two distinct output labels. Since the input parameter in
this example is a linear mixture of independent sources, a discriminant rule
depending on only the input parameter, such as sign(x1 (t))¤sign(x2 (t)), does
not describe an optimal prediction for correct output labels. The primary
challenge to the learning process is the recovery of the original independent
sources such that an effective discriminant rule can be encoded by a minimal
set of kernels to achieve maximal generalization. Our simulations show that
the PottsDA method outperforms the RBF and the SVM methods for this
example. The PottsDA has an initial model of two kernels and halts with
an optimal hit ratio of r D 100%. As shown in Table 1, the error rates of the
PottsDA for both training and testing are zero. This is a result carried out by
a discriminant network composed of a covariance matrix, four kernels and
their category responses. In Figure 2, the position of each of four kernels is
marked with a circle or cross symbol representing the category denoted by
black or gray dots, respectively. By the relation B0B D A, one can obtain a
demixing matrix,

B D
"

12.0370 5.8743
5.8743 10.2847

#

from the covariance matrix A. The two columns of the inverse B¡1 are shown
by the two lines in Figure 2, which exactly coincide with the mixing struc-
ture in direction for this example. The obtained covariance matrix provides
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Figure 2: The training patterns of the �rst example and the result of the learning
process, including the two columns of the inverse of the demixing matrix, the
four kernels, and their category responses.

Table 1: Performance of the Three Methods, First Example.

RBF(4) RBF(8) RBF(12) RBF(24) SVM PottsDA(4)

Training 14.1% 12.0% 8.6% 3.9% 13.2% 0%

Testing 13.0 12.1 8.3 4.5 14.3 0

Note: Numbers in parentheses refer to number of kernels.

a suitable distance measure between input parameters and kernels such
that the four kernels faithfully partition the parameter space into four inter-
nal regions and the resulting discriminant network successfully classi�es
samples in the training set and the testing set. In contrast, since the RBF
network is based on the Euclidean distance, its kernels result in nonfaith-
ful representations for input parameters. To illustrate this point, the RBF
method was tested separately with 4, 8, 12, and 24 kernels. Our simulations
show that the average error rate of the RBF method with 24 kernels is 3.9%
for training and 4.5% for testing and that of the SVM method is 13.2% for
training and 14.3% for testing. The average execution time of the PottsDA
for this example is 13.4 seconds.

In the second example, the input parameter contains three elements. Each
of the input parameters, x(t) D [x1 (t) x2 (t) x3 (t)]0 , is a result of the linear
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mixture, x(t) D Hs(t), of three independent sources, s(t) D [s1 (t) s2 (t) s3 (t)]0 ,
where H is a randomly generated mixing matrix with entries as follows:

H D

2
64

0.9288 0.2803 0.3770
0.3122 0.9366 0.2572
0.1994 0.2098 0.8897

3
75 .

The �rst two sources, s1 (t) and s2 (t), are of uniform distributions within
[¡0.5,0.5], and s3 (t) is a gaussian noise of N (0,

p
2). The discriminant rule

is the same as in the �rst example, sign(s1 (t)) ¤ sign(s2 (t)), treating the third
source as a noise for prediction. To retrieve this discriminant rule from the
mixture with the minimal model size, the learning process has to deal with
interference caused by the mixing structure and the noise source. As in the
�rst example, both the training set and the testing set contain 800 samples
each generated by the same linear mixture. For the testing set, all samples
of three independent sources are shown in the �rst three rows in Figure 3,
and the three mixed signals, x1 (t), x2 (t), and x3 (t), are shown by the next
three rows. The seventh row in Figure 3 shows the desired output of each

Figure 3: The time sequence of the three independent sources, the three input
parameter, the desired output, and the predicted output of the second example.
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Table 2: Performance of the Three Methods, Second Example.

RBF(4) RBF(8) RBF(12) RBF(24) SVM PottsDA(4)

Training 45.3% 31.2% 22.6% 10.9% 3.2% 0.2%

Test 44 31.1 24.6 13.9 5.9 0

Note: Numbers in parentheses refer to number of kernels.

sample. In all of �ve executions, the PottsDA derives a discriminant network
composed of a distance measure, four kernels and their category responses,
by which the resulting output for 800 testing samples as shown in the eighth
row exactly coincides with the desired output. To facilitate presentations,
according to the combination of the sign of s1 (t) and s2 (t), we have sorted the
800 testing samples in Figure 3 into four segments, such that each segment
contains the same category response. As shown in Table 2, the PottsDA
method is better than the RBF and the SVM methods in handling input
parameters of linear mixtures with noises. The average execution time of
the PottsDA for this example is 30.07 seconds.

The third example tests the three methods for the spiral data as shown
in Figure 4, where two distinct categories are denoted by stars and dots,
respectively. In this example, both the training set and testing set contain 40
spiral-distributed interleave clusters, and each cluster contains 20 input pa-
rameters. The primary challenge to a learning method is to �nd the centers
of 40 clusters. For this example, the PottsDA method has an initial model of
10 kernels. The quantity

Phdiki2 measured at step 7 in the PottsDA learning
process along updating iterations is shown in Figure 5, which also displays
the change of the model size. The �nal model size has been further reduced
to 40 by considering possible combinations of any two neighboring ker-
nels. The obtained 40 kernels in one of �ve executions with their category
responses, denoted by circle or cross symbols, are plotted in Figure 4. The
two lines in Figure 4 denote the two columns of the inverse of the obtained
demixing matrix in direction. The average training and testing error rates
of the three methods are shown in Table 3. Obviously, the PottsDA method
also outperforms the RBF and the SVM methods for this example.

5.2 Breast Cancer Data. We use the Wisconsin Breast Cancer Database
(as of July 1992) to test the PottsDA method for actual applications. This
database contains 699 instances, each containing 9 features for predicting
one of benign and malignant categories. There are 458 instances in the be-
nign category and 241 instances in the malignant category in this database.
The input parameters are clump thickness, uniformity of cell size, unifor-
mity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, and mitoses, each represented by integers
ranging from 1 to 10. The original work (Wolberg & Mangasarian, 1990) ap-
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Figure 4: The training patterns of the third example and the resultof the learning
process, including the two columns of the inverse of the demixing matrix, the
40 kernels, and their category responses.

plied the multisurface method to a 369-case subset of the database, resulting
in error testing rates more than 6% (Malini Lamego, 2001). Recently, Malini
Lamego (2001) used the neural network with algebraic loops to deal with the
�rst 683 instances of the database. In his experiment, the last 200 instances
of the 683 instances form the testing set, and the others form the learning
set; the resulting error rates are 2.3% for learning and 4.5% for testing. It
has been claimed (Malini Lamego, 2001) that the classi�cation is more dif-
�cult than the previous one (Wolberg & Mangasarian, 1990), and the result
is better than those of all previous works for this database. For comparison,
we use the same training set and testing set as in Malini Lamego (2001)
to evaluate the performance of the PottsDA method. The PottsDA method
obtains a discriminant network with 42 kernels and has error rates of 1.4%
for training and 1% for testing, as shown in Table 4. Only two instances
in the testing set are incorrectly classi�ed by the discriminant network. If
the testing set also includes the last 19 instances in the database, one ad-
ditional instance is missed by the same discriminant network, and the test
error rate is 1.39%. For the 219-case test set, the RBF method with 80 kernels
and the SVM method result in error rates of 4.17% and 4.63% for testing,
respectively. The PottsDA method is signi�cantly better than the other two
methods for the Wisconsin Breast Cancer Database.
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Figure 5: The convergence of the learning network for the third example and
the change of the model size. The vertical coordinate denotes the ratio of the
square sum of the mean activations of membership vectors to the number of
training patterns. The horizontal coordinate is the time index, each denoting a
change of the beta value.

Table 3: Performance of the Three Methods, Third Example.

RBF(40) RBF(50) RBF(60) RBF(80) SVM PottsDA(40)

Training 14.6% 10.4% 7.8% 3.3% 45.5% 0.8%

Test 15.7 12.3 9.5 4.1 45.6 0.4

Note: Numbers in parentheses refer to number of kernels.

Table 4: Performance of the PottsDA Method and the Neural Network with Al-
gebraic Loops for the 683-Case Subset of the Wisconsin Breast Cancer Database.

PottsDA(42) Neural Net with Algebraic Loops

Training (483) 1.4% 2.3%

Testing (200) 1 4.5
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5.3 Discussion. The major improvement of the PottsDA method com-
pared to the other methods is illustrated from four perspectives: the �exibil-
ity of the discriminant network, effective collective decisions of the annealed
recurrent learning network, the advantages of the generative model, and the
capability of the incremental learning process.

5.3.1 Discriminant Network. The discriminant network of the PottsDA
method composed of normalized multivariate gaussian activation functions
fGA

k g of equation 1.3 is a general version of a normalized RBF network. To an
extreme large b , the discriminant function, equation 1.5, is a piecewise func-
tion composed of a set of local functions, each de�ned within an internal
region of a faithful nonoverlapping partition into the parameter space based
on the Mahalanobis distance k ¢ kA. This discriminant function is indeed a
composition of a linear transformation and the nearest prototype classi�er
as in equation 1.6, and it possesses more �exibility for a desired mapping
function. Consider the �rst two arti�cial examples, where the training pa-
rameters are results of linear mixtures of independent sources, and their
targets are exactly encoded with source instances instead of mixtures. With
an adaptive distance measure A, the PottsDA method succeeds in locating
four kernels fykg for the optimal discriminant function. In contrast, because
of using the Euclidean distance and lacking circumspect efforts to recover
independent instances from mixtures, the RBF method results in nonfaithful
internal representations, a relatively large number of local functions based
on a Voronoi partition. As shown in Tables 2 and 3, the testing error rate
of the RBF method of 24 kernels is higher than that of the PottsDA method
of four kernels. This re�ects the weakness of the discriminant function of a
normalized RBF network as being a special case of the PottsDA method.

5.3.2 Annealed RecurrentLearning Network. Theannealedrecurrent learn-
ing network of the PottsDA method containing four sets of interactive dy-
namics is effective for optimizing highly coupled parameters of the discrim-
inant network under an annealing process. The supervised learning process
is formulated into the mathematical framework, equation 2.7, composed of
a mixed integer and linear programming, and a hybrid of the mean-�eld
annealing and the gradient-descent method is employed to derive linear
and nonlinear interactive dynamics.

The primary advantage of the annealed recurrent learning network over
a cascaded learning process or simply a gradient-descent-based learning
process is the effect of collective decisions for four sets of continuous and
discrete variables and the capability of escaping from the trap of tremendous
local minima within the energy function to approach a global minimum.
Consider the second arti�cial example, where input parameters are a result
of linear mixtures and one independent source is treated as noise to its
discriminant rule. Collective decisions realized by the annealed recurrent
learning network succeed in dealing with component analysis, clustering
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analysis, and labeling determinationas a wholeprocess and can thus achieve
an optimal discriminant function for this problem. Numerical simulations
show that the power of the discriminant network is strongly supported
by the annealed recurrent learning network. Although the RBF method
has employed the k-means algorithm to set up its initial kernels, it cannot
well handle the interference caused by linear mixtures and noises due to
the limitation from its discriminant function and learning process. Further
evaluations show that the testing error rate of the RBF method of 100 kernels
is still above 10% for this example.

5.3.3 Generative Model. Both thediscriminant networkandthe annealed
recurrent learning network are rooted from the generative model of mul-
tiple disjoint multivariate gaussian distributions. The overall distribution
corresponding to the generative model is general enough to characterize
an arbitrary parameter space, and the involved parameter estimation gains
potential advantages from maximal likelihood principle, which provides
solid theoretical fundamentals to develop the mathematical framework. To
realize natural discriminant analysis, the PottsDA method initiates a gener-
ative model to all predictors, using the annealed recurrent learning network
to adapt the kernels and the covariance matrix subject to interpolating con-
ditions proposed by paired training samples, and using the discriminant
network to classify instances. A simpli�ed version of the generative model
is simulated with a uni�ed covariance matrix. For the Wisconsin Breast
Cancer Database, its performance is encouraging. The obtained parameters,
including the 42 kernels and the covariance matrix, could provide feedback
for understanding relations among components of predictors.

5.3.4 Incremental Learning Process. The incremental learning process is
capable of determining minimal model size subject to interpolating con-
ditions. Consider the third arti�cial example composed of 40 interleaving
clusters in two different classes. Without interferences caused by linear mix-
tures and noises, this problem tests the capability for clustering analysis. For
this example, the RBF method behaves better than the SVM method, but it
still takes the RBF method 80 kernels to produce a testing error rate of 4.1%.
The incremental learning process of the PottsDA method is more effective.
It obtains a discriminant network of 40 kernels with testing error rates near
zero.

6 Conclusions

We have proposed a new learning process for discriminant analysis based
on the four sets of interactive dynamics, and its encouraging performance
has been shown by numerical simulations for some arti�cial and real exam-
ples. To develop the interactive dynamics, we have proposed multiple dis-
joint multivariate gaussian distributions to serve as a generative model for
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the parameter space. By combining the maximization of the log-likelihood
functions, the �tness of the generative model to all input parameters, and
the minimization of the design cost, we have a mathematical framework
for discriminant analysis. By relating the discrete variables to Potts neural
variables, we can further apply a hybrid of the mean-�eld annealing and
gradient-descent methods to the optimization of the mixed integer and lin-
ear programing and obtain the four sets of interactive dynamics performing
the annealed recurrent learning network for discriminant analysis. The new
learning process is of a parallel and distributed process, and its evolution is
well controlled by an annealing process in an analog with the physical an-
nealing. An effective incremental learning procedure is also developed for
optimizing the model size. The adaptive covariance matrix of the discrimi-
nant networkplays a central role of retrieving theunknown mixingstructure
within the input parameters and extracting output-dependent features for
discriminant analysis. The new learning process is effective for developing
faithful internal representations of the input parameters and constructing
essential boundary structures for classi�cation.

Appendix

That steps 2–5 in the learning process converge can be proved. Rewrite the
mean-�eld equations in the context as the following continuous form,

duik

dt
D ¡ @y

@ hdiki D ¡@E(y, A, hdi , hj i)
@ hdiki

hdii D
µ

exp(bui1)P
l exp(buil)

¢ ¢ ¢ exp(buiK)P
l exp(buil)

¶0

D
X

k

exp(buik)P
l exp(buil)

ek

and

dvkm

dt
D ¡ @y

@ hjkmi D ¡@E(y, A, hdi , hj i)
@ hjkmi

hjki D
µ

exp(bvk1)P
l exp(bvkl)

¢ ¢ ¢ exp(bvkM)P
l exp(bvkl)

¶0

D
X

h

exp(bvkh)P
l exp(bvkl)

eh,

where vector ek is a standard unit vector of which the kth element is one.
Then rewrite the updating rule as the following dynamics:

dAmn

dt
´ ¡g1

@y

@Amn
D ¡g1

@E(y, A, hdi , hj i)
@Amn
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and

dyk

dt
´ ¡g2

@y

@yk
D ¡g2

@E(y, A, hdi , hj i)
@yk

.

Then the convergence of the free energy y along the trace of these four
sets of dynamics can be shown:

dy

dt
D

X
i

�
@y

@ hdii
´0

d hdki
dt

C
X

k

�
@y

@ hjki
´0

d hjki
dt

C
X
mn

�
@y

@Amn

´
dAmn

dt
C

X
k

�
@y

@yk

´0 dyk

dt

D ¡
X

i

�
dui

dt

´0 �
C1

dui

dt

´
¡

X
k

�
dvk

dt

´0 �
C2

dvk

dt

´

¡g1

X
mn

�
dAmn

dt

´ �
dAmn

dt

´
¡g2

X
k

�
dyk

dt

´0 �
dyk

dt

´
,

5 0

where C1 is the Hessian of ln z(uk, b ),

C1 D
P

[sl] exp(b hdki0 sl)[sl ¡ hdki][sl ¡ hdki]0P
[sl] exp(b hdki0 sl )

.

[sk] runs over fe1, . . . , eKg . Since C1 is positive de�nite,�
duk

dt

´0 �
C1

duk

dt

´
> 0.

For the same reason,�
dvm

dt

´0 �
C2

dvm

dt

´
> 0.

dy
dt 5 0 is shown.
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