This course introduces intelligent numerical computations based on advanced unsupervised and supervised learning of neural networks respectively for independent component analysis, blind source separation, self-organization, classification, data driven function approximation.

Unsupervised learning is subject to data sampled from a d-dimensional space. In the field of neural networks, relevant computational tasks have been formulated for ICA (independent component analysis) and SOM (self-organization). Different perspectives for unsupervised learning have been addressed. Density function estimation focuses on approximating the output of pdf (probability density function) underlying given sample. When all training data are required for density evaluation, density estimation apparently lacks ability of data reduction and feature extraction and can not be regarded as some kind of unsupervised learning. This is because internal representations of unsupervised learning in size should be significatly less than provided samples.

If data size can not be reduced for density evaluation, it will need unlimited memory to store redundancy within samples. Data reduction to efficient internal representations and feature extraction are essential for unsupervised learning.

Page 1 of 4

	Significant features
	Training data> Unsupervised learning> Structural internal representations
210	nificant factures and Structural internal representations
	nificant features and Structural internal representations means focuses on locating distributed local means for data clustering.
	Euclidean distance
	Distributed local means
	Quantization
	Clustering by minimization of the average distance between each data point a
	center
o<	tential extension or alternative
	Euclidean distance vs Mahalanobis distance
	Distributed local means and covariance matrices
•	Quantization vs expectation
•	Clustering by maximal fitting criteria
IC	Δ
	sampling from multi-channel observations
	linear mixture assumption
	statistically dependency
•	Kullback-Leibler divergence between joint PDFs and the product of marginal
	Fs of independent components
•	
• >[
• >[de-mixing otential extensions
• >[• P	de-mixing
• >[• P	de-mixing otential extensions
• >[• P •	de-mixing otential extensions Time order
• P[• • •	de-mixing otential extensions Time order convolutive mixture assumption, multiple linear mixture assumption

Self-organization

- mapping on a cortex like surface
- lattice structure Gaussian mixture
- quantization vs expectation
- Winner take all principle
- Kohonen's self-organizing algorithm
- annealed KL divergence minimization
- Generalized Travelling salesman problem
- Gene sorting
- dimensionality reduction

Supervised learning for classification and function approximation

paired training data

testing

- unconstrained optimization vs constrained optimization
- support boudary approximation
- Function approximation and nonlinear regression
- classification and discriminate analysis

A hybrid of unsupervised and
supervised learning will be introduced for structural recurrence
relation approximation, density function approximation, signal
clustering and covariance matrix analysis with application to
biomedical signal and image processes.
1 Unsupervised learning and supervised learning
2 Independent component analysis
3 PCA, JadelCA and PottsICA
4 Fetal ECG analysis, ERP and EEG analysis
5 Convolutive ICA
6 Blind source separation
7 Self-organization
8 Covariance matrix analysis
10 Supervised learning for function approximation
11 Supervised learning for classification
12 Support space analysis and density approximation
13 Recurrence relation approximation
14 Structural recurrence relation approximation
15 Chaotic time series analysis
 16 Color image analysis
17 A hybrid of unsupervised and supervised learning
Page 4 of 4