Discriminant analysis

Examples

1. 2D Data Separation (RBF)

http://134.208.26.59/MathProgramming2010/Lecture10/Lecture10III.files/frame.htm http://134.208.26.59/MathProgramming2010/Lecture10/Lecture10III.pdf

2 Hill and Valley (MLP)

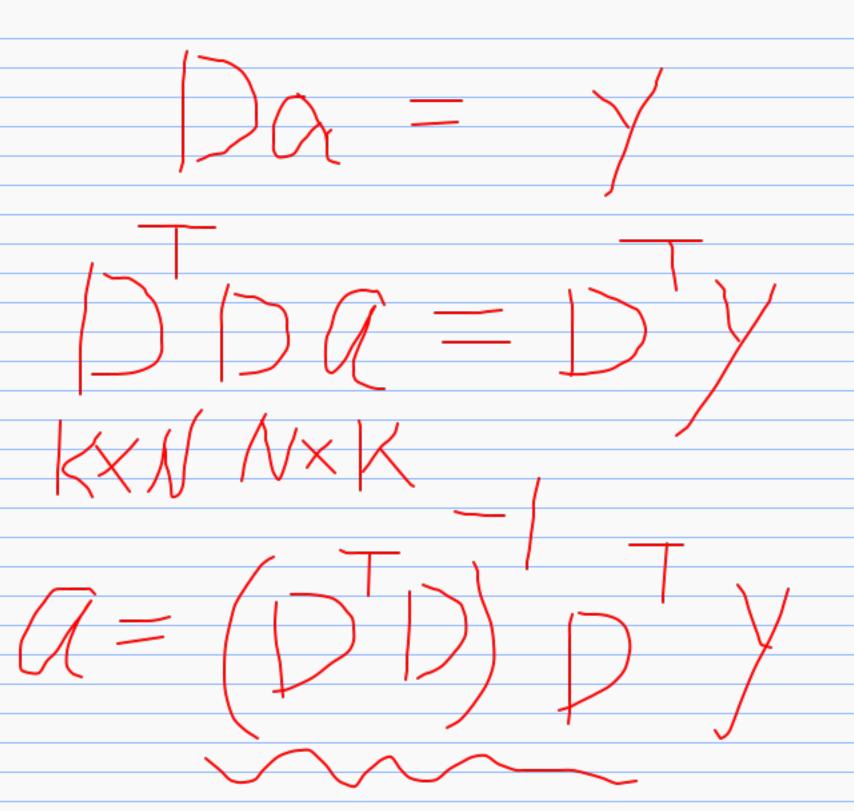
http://134.208.26.59/INA/Discriminant%20analysis.files/frame.htm http://134.208.26.59/INA/Discriminant%20analysis.pdf

- 3. Hand written character recognition http://134.208.26.59/INA/PenWriting.files/frame.htm
- 4. Breast cancer diagnosis http://134.208.26.59/INA/Cancer_Diagnosis.files/frame.htm

Firewains
Exercise
1. A simple approach for supervised learning of a network of radial basis functions subject to paired training data has been introduced. Two cascaded steps
respectively apply the K-means method and the hyperplane fitting method to find
proper centers of predictors and posterior weights. Please implement the learning
method for function approximation.
2. Please revise the toolkit of data separation
http://134.208.26.59/AdvancedNA/Lecture6/Lecture62.files/frame.htm
Apply supervised learning of radial basis functions
Apply supervised learning of simple perceptrons
Page 2 of 7
raye 2 01 /

Support Vector Machine

$$D_{\alpha} = \frac{1}{2}$$


$$D_{\alpha} = \frac{1}{2}$$

$$K_{x}K$$

$$D_{\alpha} = \frac{1}{2}NV(D)$$

$$X_{x}K$$

$$D_{\alpha} = \frac{1}{2}NV(D)$$

