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Nonlinear independent component analysis by
learning generalized adalines

Jiann-Ming Wu†, Yi-Cyun Yang

Abstract–This work proposes the novel modeling of post-
nonlinear mixtures of independent sources and a learning
method for the reverse problem that addresses on concur-
rent estimation of model parameters and independent com-
ponents subject to given multichannel observations. The
proposed post-nonlinear mixture model is realized by a net-
work of multiple generalized adalines(gadalines), where each
weighted gadaline emulates a transmitting link that maps
independent sources to single channel observations. Based
on the post-nonlinear mixture assumption, learning multiple
weighted gadalines for retrieving independent components
is resolved by the leave-one-out approximation operated un-
der the mean-field-annealing process. Each time for some
selected single channel observations, the dominant indepen-
dent component is refined to compensate for the error of
approximating the selected channel by the remaining inde-
pendent components. This work shows that interactive dy-
namics derived for gadaline optimization executed under the
mean field annealing is accurate and reliable for blind sep-
aration of post-nonlinear mixtures of independent sources.

Keywords– Blind source separation, post-nonlinear mix-
tures, leave-one-out approximation, mean field annealing,
gadaline optimization

I. Introduction

Independent component analysis (ICA)[1]-[4] has been
extensively applied to blind source separation (BSS) of
real world signals, such as electrocardiograms(ECG), elec-
troencephalograms(EEG), event related potential(ERP)
and magnetic resonance images(MRI). The formation of
multichannel signals has been typically modeled following
the linear mixture assumption, under which multichannel
observations, {x[t]}t, are regarded as a sample from linear
mixtures of independent sources,

x = As, (1)

where s = (s1, s2, ..., sd)
T denotes collection of indepen-

dent sources and A is an unknown invertible d × d mix-
ing matrix. Under the linear mixture assumption indepen-
dent sources can be theoretically recovered by the following
demixing process,

y[t] =Wx[t],

where the product ofW and A or its permutation is a di-
agonally dominant matrix. Independent component anal-
ysis has been well resolved by minimization of statistical
criteria, such as the Kurtosis or Kullback-Leibler diver-
gence[7][8], however its effectiveness could be only guar-
anteed under the linear mixture assumption.

Correspondence: Jiann-Ming Wu, Department of Applied Mathe-
matics, National Dong Hwa University, Hualien,Taiwan. Tel. 8863-
8633531, FAX : 8863-8633510, email: jmwu@mail. ndhu.edu.tw

The formation of multichannel observations is extended
in this work to the following post-nonlinear(PNL) mixture
model,

x = F (h = As)

= (f1(h1 = a1s), ..., fd(hd = ads))
T (2)

where F denotes a function vector and ai denotes the ith
row of the mixing matrix A. Since each function element
fi in F comes behind a linear projection, it is termed as a
post-nonlinear function[5][6]. Of independent sources PNL
mixtures reduce to linear mixtures if each fi is restricted
to be linear. Provided without PNL function elements and
the mixing matrix, PNL independent component analysis
is aimed to recover independent sources subject to given
multichannel observations that are assumed as PNL mix-
tures of independent sources. The PNL mixture model is
more general than the linear mixture model for formation
emulation of multichannel observations. Effective PNL in-
dependent component analysis is therefore expected more
practical for blind separation of real world signals whose
formation is probably beyond the scope well characterized
by linear mixtures of independent sources.
Neural networks of weighted gadalines that are gener-

alized from adalines of Widrow[9] have been proposed for
data driven function approximation via supervised learn-
ing. The weighted gadaline that carries out an adaptive
PNL projection[13] is employed to emulate the PNL trans-
mitting link that maps independent sources to single chan-
nel observations. By emulation using weighted gadalines,
the PNL ICA problem is translated to concurrent estima-
tion of a gadaline network and independent components
subject to multichannel observations which are assumed as
a sample from PNL mixtures of independent sources.
Effective concurrent estimation of weighted gadalines

and independent components requires highly accurate and
reliable collective decisions on determination of tremendous
unknowns. The learning method proposed for the PNLICA
problem iteratively operates the leave-one-out approxima-
tion, which is realized by execution of interactive dynamics
derived for single gadaline optimization, under the mean
field annealing process[10]-[12]. Each time for some se-
lected single channel observations, the dominant indepen-
dent component is refined to compensate for the error of
approximating the selected channel by the remaining inde-
pendent components.
This paper is organized to give details of emulating

the PNL mixture model using multiple weighted gadalines
in the upcoming section, present the proposed learning
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Fig. 1. The PNL mixture model

method in section III, show numerical results and arrive
at our conclusions in the final section.

II. Post-nonlinear mixture model

The block diagram in Figure 1 shows the PNL mixture
model of equation (2) that is emulated by the gadaline net-
work shown in Figure 2, where each weighted gadaline im-
plements a PNL transmitting link from independent com-
ponents to single channel observations.
Gadaline [13] is an abbreviation of the Generalized

ADAptive LINear Element that is a multi-state neural pro-
cessing element generalized from the adaline of Widrow [9].
As shown in figure 2, a gadaline is composed of a receptive
field w and a K-state transfer function that maps the lin-
ear projection, h= wTs, to a unitary vector of K binary
bits like

θK(h; c) =



eK1 if h ∈ I1
...

eKi if h ∈ Ii
...

eKK if h ∈ IK


,

where c = (c1, c2, ..., cK)T containsK distinct knots which
partition the function domain into K disjoint intervals,
each indicated by Ii = {h|i = argmin

k
|h− ck|}, and eKi

denotes a unitary vector with the only active bit at the ith
position. In response to an input vector, a weighted gada-
line has an output that measures the product of a K-state
activation and a posterior weight,

y = rTθK(w
Ts; c) (3)

where r = (r1, r2, ..., rK)
T. In the previous work [13], a

weighted gadaline is organized to perform a post-nonlinear
projection with adaptive post-nonlinearity to clamped
paired data. The gadaline network shown in figure 2 serves
as a post-nonlinear mixture model which is adaptive both
in linear and nonlinear parts. For blind separation of post-
nonlinear mixtures of independent sources, estimation of

Fig. 2. A gadaline network for emulation of the PNL mixture model

network parameters subject to given multichannel obser-
vations is resolved by the learning method proposed in the
upcoming section.

III. Post-nonlinear ICA

A. Gadaline optimization

Gadaline optimization subject to given paired data,
{(s[t],y[t])}t, for a single transmitting link is introduced in
this subsection. The first entry of the paired data denotes
independent sources and the second entry denotes single
channel observations. Gadaline optimization[13] that has
been applied for data driven function approximation is
aimed to optimize parameters of a weighted gadaline, in-
cluding the receptive field w, knot vector c and posterior
weight r subject to constrains proposed by given paired
data.
The output of a weighted gadaline in response to the

projection h = wTs is characterized by the following con-
ditional probability density function(pdf),

q(y|h ∈ Ik) = f(y; rk, σ
2
y), (4)

where f denotes the normal pdf with mean rk and variance
σ2y. Combining equation (3) and equation (4), we have

q(y|h) =
KX
k=1

θTK(w
Ts[t]; c)eKk f(y; rk,σ

2
y) (5)

Define
δ[t] = θTK(h[t] = w

Ts[t]; c).

Collection of projections on w, denoted by

Hk = {h[t]|δ[t] = eKk },
is assumed as a sample from the normal pdf with the mean
ck and variance σ2h. Fitting the joint pdf of y and h to
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all (h[t], y[t]) with h[t] belonging Hk leads to the following
average log likelihood,

lk =
1

Nk
log

N

Π
t:δ [t]=eKk

q(y[t]|h[t])f(h[t]; ck, σ2h)

=
1

Nk

NX
t:δ [t]=eKk

log{f(y[t]; rk, σ2y)f(h[t]; ck, σ2h)},

where Nk denotes the size of the set Hk and δk[t] is the kth
element of δ[t]. Summing up all lk leads to the following
criterion,

E(δ,w, c, r,σ)

= −
KX
k=1

Nk

N
lk

= − 1
N

KX
k=1

NX
t:δ [t]=eKk

log{f(y[t]; rk, σ2y)f(h[t]; ck, σ2h)}

= − 1
N

KX
k=1

NX
t=1

δ[t]eKk log{f(y[t]; rk,σ2y)f(h[t]; ck,σ2h)}

= − 1
N

NX
t=1

KX
k=1

δk[t] log f(y[t]; rk, σ
2
y)

− 1
N

KX
k=1

NX
t=1

δk[t] log f(h[t]; ck, σ
2
h) (6)

whose minimization subject to

KX
k=1

δk[t] = 1,∀t

δk[t] ∈ {0, 1},∀t, k,

induces a mathematical framework for gadaline opti-
mization, where δ denotes collection of all δ[t] and
σ = {σh,σy}.
Since of consisting of both continuous and discrete vari-

ables, the fitting criterion of equation (6) is minimized by
a hybrid of the mean-field-annealing (MFA) and gradient
decent methods. δ is randomized according to the Boltz-
mann assumption[12] and all its elements are assumed to
be statistically independent. It follows that the Hopfield-
like free energy[10] that sums up individual entropies of all
elements in δ and the mean of the fitting criterion E can
be expressed as follows,

ψ(u,v,w, c, r,σ)

= E(v,w, c, r,σ) +
NX
t=1

KX
k=1

vk[t]uk[t]

− 1
β

NX
t=1

log

"
KX
k=1

exp(βuk[t])

#
,

where all uk[t] are auxiliary variables. Directly setting(
∂ψ

∂uk[t]
= 0

∂ψ
∂vk[t]

= 0
,∀t, k

∂E(v,w,c,r,σ)
∂ck

= 0
∂E(v,w,c,r,σ)

∂rk
= 0

∂E(v,w,c,r,σ)
∂σh

= 0
∂E(v,w,c,r,σ)

∂σy
= 0

∂E(v,w,c,r,σ)
∂w = 0

leads to the following updating rules that determine the
saddle point of the free energy function,

uk [t] = − 1

2Nσ2h

¡
wTs[t]− ck

¢2
(7)

− 1

2Nσ2y
(y[t]− rk)

2

vk[t] =
exp(βuk[t])
KP
l=1

exp(βul[t])

(8)

ck =

NP
t
vk[t]h[t]

NP
t=1

vk[t]

, (9)

rk =

NP
t=1

vk[t]y[t]

NP
t=1

vk[t]

, (10)

σh =

"
1

T

NX
t=1

KX
k=1

δk[t]
¡
wTs[t]− ck

¢2#1/2
, (11)

σy =

"
1

T

NX
t=1

KX
k=1

δk[t] (y[t]− rk)
2

#1/2
. (12)

w = B+b. (13)

where B+ denotes the pseudo inverse of B with elements

Bji =
NX
t=1

sj [t]si[t],

bj =
KX
k=1

ck(
NX
t=1

vk[t]sj [t]).

B. Leave-one-out approximation

The leave-one-out approximation operated under the
mean field annealing process is employed for concurrent
estimation of network parameters and independent compo-
nents subject to given multichannel observations. Let x[t]
denote multichannel observations and all x[t] be a sample
from PNL mixtures of independent sources and o[t] denote
the instance of unknown independent sources, where t runs
from 1 to N, and x[t] = (x1[t],x2[t], ..., xd[t])T .
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The proposed learning method iteratively refines esti-
mation of independent sources and network parameters.
According to the PNL mixture model emulated in figure
2, the observation xi of the ith channel could be approxi-
mated by post-nonlinear projection of estimated indepen-
dent components other than the ith independent compo-
nent and the obtained approximating error could be used to
define the ith independent component. Since both indepen-
dent components and the gadaline network are unknown
to the learning method, their uncertainty is compensated
by the mean-field-annealing process, which schedules the
temperature-like parameter 1

β gradually from high to low
values to emulate physical annealing.
Let n denote the iteration number and s[n, t] = (s1[n, t],

... , sd[n, t])
T denote the approximation to o[t] maintained

at the nth iteration by the learning method. Initially, n is
set to zero and s[n, t] is directly set to x[t] for n = 0. At
each iteration, the learning method approximates observa-
tions {xi[t]}t of each channel i by the output of a weighted
gadaline in responding inputs belonging {sj [n, t]}t,j 6=i. Fol-
lowing equation (6), parameters of the ith weighted gada-
line, including w, c, r and σ, and v, are optimized by in-
teractive dynamics (7-13), where the gadaline input s[t] is
set to have only elements in {sj [n, t]}j 6=i and the gadaline
output y[t] is set to xi[t] for all t. The approximating error
obtained by gadaline optimization is expressed by

ei[n, t] = xi[t]−
X
k

vk[t]rk, (14)

which is employed to refine current {si[n, t]}t for deriving
{si[n + 1, t]}t. Gadaline optimization is further applied
to determine optimal scalar inputs to a weighted gadaline
whose expected output is set to ei[n, t]. For the purpose the
following updating rule should be recruited to interactive
dynamics (7-12),

s[t] =

P
k

ckvk[t]P
k

vk[t]
. (15)

The obtained optimal scalar inputs are assigned to {si[n+
1, t]}t to compensate for the error of approximating the ith
channel by remaining independent components. The pro-
posed learning method iteratively estimates independent
sources one by one under the mean field annealing process
until the halting condition holds. The learning method for
blind separation of PNL mixtures of independent sources
is summarized by the following stepwise procedure.
1. Set n = 0, si[n, t] = xi[t],∀i, t, and β to a sufficiently
low value.
2. For each i, sequentially execute the following steps.
(a) Set s[t] to have all elements belonging {sj [n, t]}j 6=i
and y[t] = xi[t] for all t.
(b) Find v,w, c, r using equation (7)∼(13).
(c) Determine ei[n, t] by equation (14) ∀t.
(d) Use interactive dynamics (7-12) and (15) to determine
optimal inputs to a weighted gadaline whose expected out-
put y[t] is clamped to ei[n, t] and replace si[n + 1, t] with
the obtained optimal input for all t.

3. If the halting condition holds exit, otherwise set n =
n+ 1, β = β

0.995 and go to step 2.

IV. Numerical simulations and conclusions

The first example tests the proposed learning method for
blind separation of linear mixtures of independent sources.
The gadaline network shown in figure 2 reduces to a linear
network if each knot vector c is fixed to have elements that
partition the bounded range of projections, such as [−5, 5],
into equal lengthed intervals and each posterior weight is
fixed to c. For the linear case, the step 2d is simplified to
replace si[n+ 1, t] with φ(ei[n, t]), where

φ(z) =
KX
k=1

vk[t]ck,

and 
uk[t] = (z − ck)

2

vk[t] =
exp(−βuk[t])
KP
l=1

exp(−βul[t])
.

At sufficiently low β, the transfer function φmaps all its in-
puts to zero for compensating high uncertainty of indepen-
dent source estimation. After the parameter β is gradually
increased by the mean field annealing process, the trans-
fer function φ tends to act similar to a linear threshold
function. For extremely large β, independent source es-
timation operates with confident certainty. The proposed
learning method for the linear case is applied to process
multichannel observations shown in figure 4, which are lin-
ear mixtures of independent sources of figure 3 through a
random square matrix created by

A = Id + (rand(d, d)− 0.5)× 0.6 (16)

where rand(d, d) denotes a random matrix whose d×d ele-
ments are sampled from a uniform random variable ranging
within [0 1], d denotes the channel number of independent
sources, and Id is an identity matrix. The obtained inde-
pendent components shown in figure 5 well recover inde-
pendent sources of figure 3.
Multichannel observations shown in figure 7 are PNL

mixtures of independent sources of figure 6 created by sin( 2πt800)
sin( 2πt300 + 6 cos(

2πt
60 ))

sin( 2πt90 )

 , for t = 1, ..., 800,

in the previous work[8]. The used PNL mixture model
has its linear part generated by the rule (16) and PNL
part realized by three hyper tangent functions. Without
given the mixing matrix A and PNL functions, the pro-
posed learning method is employed to estimate the PNL
mixture model and independent components from multi-
channel observations of figure 7. As shown in figure 8,
the three PNL functions estimated by the proposed learn-
ing method are invertible sigmoid-like functions. Through
their inverse functions multichannel observations of figure
7 could be transformed to linear mixtures of independent
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sources. We further applied the proposed learning method
to learn a linear mixture network for blind separation of the
transformed data and attained independent components of
figure 9 which shows well recovery of independent sources
of figure 6.
Numerical results show the proposed learning method is

effective for linear and post-nonlinear independent compo-
nent analysis. The leave-one-out approximation operated
under the mean field annealing process is feasible for con-
current estimation of the gadaline network and indepen-
dent components. Each time for selected single channel
observations, the dominant independent component is re-
garded absent from contributing to the selected channel
and is refined to compensate for the approximating error
of the selected channel by the remaining independent com-
ponents. The idea is simple but its implementation needs
accurate and reliable collective decisions on determination
of tremendous discrete and continuous unknowns. This
work shows execution of interactive dynamics derived for
gadaline optimization under the mean field annealing pro-
cess is potential for fitting the computational requirement
of concurrent estimation of the gadaline network and inde-
pendent components.
Effective learning of the PNL mixture model proposed

in this work significantly extends the application domain
of blind separation of real world signals since the traditional
ICA algorithm is impractical for blind separation of PNL
mixtures of independent sources. The PNL mixture as-
sumption which is more general for formation emulation of
real world signals than the linear mixture assumption. The
proposed learning method translates PNLICA to individual
sub-tasks of gadaline optimization and operates under the
mean field annealing process for accurate neural compu-
tations. Its derivation avoids formulating and minimizing
complicate statistical criteria, such as the Kurtosis or Kull-
back Leibler divergence[7][8], for quantifying dependency of
random multivariates that are PNL mixtures of indepen-
dent sources. Under the PNL mixture assumption, effective
reduction of statistical dependency of independent compo-
nents through direct minimization of the KL divergence is
a complicate task that is still challenging researchers in the
field of neural networks for nonlinear independent compo-
nent analysis. Future works will focus on further verifi-
cation of applying the proposed learning method for non-
linear independent component analysis of real world sig-
nals, such as electrocardiograms(ECG), electroencephalo-
grams(EEG), event related potential(ERP) and magnetic
resonance images(MRI).

References
[1] P. Comom, Independent component analysis, a new concept,

Signal Process, vol. 36, no. 3, pp. 287-314, Apr 1994.
[2] J. F. Cardoso, Blind Signal Separation: Statistical Principles,

PROCEEDINGS OF THE IEEE 86 (10): 2009-2025 OCT 1998
[3] J. F. Cardoso, High-order contrasts for independent component

analysis, Neural Computation, vol. 11, pp. 157-192, 1999.
[4] R. Boscolo, H. Pan, and V. Roychowdhury, Independent compo-

nent analysis based on nonparametric density estimation, IEEE
Trans. Neural Networks, vol. 15, no. 1, pp. 55-65, 2004.

[5] A. Taleb, and C. Jutten, Source separation in post-nonlinear

Fig. 3. Independent sources

Fig. 4. Multichannel observations derived by linear mixtures of in-
dependent sources

mixtures, IEEE Trans. Signal Processing, vol. 47, no. 10, pp.
2807-2820, 1999.

[6] L. B. Almeida, Linear and nonlinear ICA based on mutual infor-
mation, MISEP method, Signal Processing, vol. 84, pp. 231-245,
2003.

[7] S. I. Amari, A. Cichocki and H. H. Yang, A new learning algo-
rithm for blind signal separation, Advances in Neural Informa-
tion Processing Systems, vol 8, pp. 757-763, 1996.

[8] J. Basak, and S. Amari, Blind source separation of a mixture
of uniformly distributed source signal: a novel approach, Neural
Computation, vol. 11, no. 4, pp. 1011-1034. 1999.

[9] B.Widrow, Generalization and information storage in networks
of adaline neuron in self-organizing systems, M. Yovitz, G. Ja-
cobi, and G. Goldstein, Eds. Washington, DC: Spartan, pp. 435-
461, 1962.

[10] Peterson C. & Söderberg B., A new method for mapping opti-
mization problems onto neural network, Int. J. Neural Syst. 1(3),
1989.

[11] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, Upper Saddle River, 1999.

[12] J. M. Wu, and S. J. Chiu, Independent component analysis using
Potts models, IEEE Trans. Neural Networks, vol. 12, no. 2, pp.
202-211, Mar 2001.

[13] J. M. Wu, Z. H. Lin, and P. H. Hsu, Function approximation
using generalized adalines, IEEE Trans. Neural Networks., vol.
17, no. 3, pp. 541-558, May 2006.



6

Fig. 5. Independent components obtained by the proposed learning
method for a linear network

Fig. 6. Independent sources

Fig. 7. Multichannel observations sampled from PNL mixtures of
independent sources

Fig. 8. PNL functions derived by the proposed learning method

Fig. 9. Independent components estimated by the proposed learning
method for blind separation of multichannel observations of figure
7


