$$f(x) = 2, \text{ if } x > 3$$

= $x - 1, \text{ if } 3 \ge x > 0$
= -1-x, if $0 \ge x$.

- B. Write a matlab function to evaluate prefix expressions,(a) prefix('+',5,4) (b) prefix('-',5,4) (c) prefix('*',5,4), (d) prefix('/',5,4)
- C. Let x denote the score. Write a matlab function to grade 'A' for x > 90, 'B' for $80 < x \le 90$, 'C' for $70 < x \le 80$, and 'D' for $x \le 70$.
- D. Generate a random sample from a square and draw points within I and III quadrants.
- E. x=rand(1,5)*2-1; y=rand(1,5)*2-1

Let $x = (x_1, x_2, x_3, x_4, x_5)$ and $y = (y_1, y_2, y_3, y_4, y_5)$.

- (a) Display (x_i, y_i) that satisfies $x_i < 0$ and $y_i > 0$.
- (b) Display (x_i, y_i) that is not within the unit circle centered at the origin.

F.

Line fitting to paired data

(a) Create paired data, denoted by $S = \{(x_i, y_i)\}_{i=1}^N$, with

where a and b are constants and all n_i denote noises uniformly sampled from the interval [-0.1, 0.1].

- (b) Write a matlab function to estimate a and b subject to S.
- (c) Plot paired data in S and the line expressed by $y = \hat{a}x + \hat{b}$, where \hat{a} and \hat{b} denote estimated line parameters.