
WHILE LOOPING

OUTLINE
•Gene Pattern parsing

•Walking

•Matrix multiplication

•Decimal to binary translation

•Binary search

•Root finding

Matrix multiplication
• Draw a flow chart to illustrate finding

 by a for-loop
vP

k)'(lim ∞→k

軟體實作與計算實驗

for i=1:k

v_new=P'*v

norm(v-v_new)<10^-6

Yes:converge

break v=v_new

change>10^-6

change=1

v_new=P'*v

change=norm(v-v_new)
v=v_new

while loopFor loop

~Halting
Cond.

Initialization

Body statements

Exit

T

• Execute body statements while halting condition is not satisfied

• The entry condition should eventually become false by iteratively
executing body statements

WHILE LOOPING
•While-looping uses a halting condition to break iteration

•If the halting condition holds, while-looping breaks

•If the halting condition never holds, while-looping
executes endless

•Any programmable program can be implemented in
form of while-looping

GENE PARSING 5 A'S
•A set of genetic alphabets {A, T, C, G}

•A gene is series of alphabets in {A, T, C, G}

•Draw a while-looping flow chart to get alphabets repeatedly
until 5 A's have been given.

•This problem can be implemented by while-looping

•It is unable to determine the length of parsing characters in
advance.

A STATE DIAGRAM

•A state diagram is employed to parse a string

•A starting state

•An ending state

•Four internal states respectively represent cumulated
A's

5 A'S
Starting

S1
S3

S2
S4

Ending
'T','C','G'

'T','C','G'

'T','C','G'

'T','C','G'

'T','C','G'

'A'

'A'
'A'

'A'

'A'

WHILE-LOOPING
•Use an integer to emulate all states

•S is set to zero for initialization

•Increase S by one to emulate state transition whenever 'A' is given

•The halting condition simply checks if S equals 5

•Body statement

A.Get a character

B. Update S

S~=5

S=0

C=input('A T C G:','s')

Exit

T

C=='A'

S=S+1

T

PARSING 5 CONSECUTIVE A'S
•A set of genetic alphabets {A, T, C, G}

•A gene is series of alphabets in {A, T, C, G}

•Draw a while-looping flow chart to get alphabets
repeatedly until five consecutive A's appear

•This problem can be implemented by while-looping

•It is unable to determine the length of parsing characters.

A STATE DIAGRAM
•State space: s starting state, four internal states, and an
ending state

•Four internal states respectively represent the number of
consecutive A's

•State transition:

•if 'A' is given, move to the success state

•if other characters are given, move to the starting state

5 A'S

Starting
S1

S3

S2
S4

Ending

'A'

'A' 'A'
'A'

'A'

WHILE-LOOPING
•Use an integer to emulate all states

•S is set to zero for initialization

•Increase S by one to emulate state transition whenever 'A' is given

•The halting condition simply checks if S equals 5

•Body statement

A.Get a character

B. Update S

S~=5

S=0

C=input('A T C G:')

Exit

T

C=='A'

S=S+1

T S=0

REPEAT
ATATATATCG

(A T)CG

ATATATATATATCG

(A T)CG
ATATATATATATGCAAA

(A T)CG(A)

4

6

6 3

Starting

S1 S2

S3

End

A

T

CG

A C

G

TCG

TC

TG

(AT)CG
k

A

A

PARSING
•A set of genetic alphabets {A, T, C, G}

•A gene is a series of alphabets in {A, T, C, G}

•Draw a while-looping flow chart to get alphabets

•repeatedly until appear

•This problem can be implemented by while-looping

•It is unable to determine the length of parsing characters.

(AT)CG
k

(AT)CG
k

A STATE DIAGRAM
•State space: s starting state, three internal states, and
an ending state

•S1:

•S2:

•S3:

(AT)A

k(AT)

k

(AT)C
k

, A

switch S

case 3:
if C=='G'

S=4;
elseif C=='A'
 S=1
else

S=0;
end

case 0:
if C=='A'

S=S+1;
end

case 1:
if C=='T'

S=S+1;
elseif C=='A'
 S=1;
else

S=0;
end

case 2:
if C=='C'

S=S+1;
elseif C='A'

S=S-1;
else

S=0;
end

S~=4

S=0

C=input('ATCG:')

EXIT

