數值方法, Applied Mathematics, NDHU

·         助教資訊及作業須知  

·         課程教學計劃表2012.pdf

·         MATLAB installation pdf

·         * 2015EX1

·         Problem Set A Problem Set B Problem Set C Problem Set D

·         * Lecture: Matrix, for and while looping 2014ex1 20170224ex1 For_looping rar

·         Lecture : Matlab Matrix Manipulation pdf ex1

·         Lecture: Looping pdf ex2 20170303ex2

·         SpringerLink - An introduction to progamming and numerical methods in MATLAB

·         * Lecture 1: Inline function, Taylor expansion pdf  *pdf  **pdf ex3 Note ex1 Note ex2 2016ex2   20170310ex3 20170317ex4

·         * Lecture 2: Bisection method, fzero pdf 2015EX2 2016ex3

·         * Lecture 3: Root Finding pdf ex3II Note_ex3 2015EX3

·         Recursive programming for determinant calculate  2016EX4  2016EX5

·         Lecture 4I: Numerical Integration  pdf 2016EX6 

·         Lecture 4II: Sympson rule pdf ex5 ex5_note

·         Lecture  5: Lagrange Polynomial, Polynomial Interpolation pdf  2016EX7  2016期中考詳解 data analysis data analysis5 data analysis6

·         Lecture  6: Spline Interpolation   pdf ex6                                                     

·         Lecture 7: Polynomial Approximation (fitting) pdf 2016EX8

·         Lecture 8: Hyper-plane fitting 2016EX9 2016EX10

·         Nonlinear function fitting I 2015EX7 sin_2tanh.rar  2016EX11

·         Nonlinear function fitting II 2015EX8 tic_tac.rar

·         Membership function approximation 2015EX9 

·         Lecture 8I: Function Approximation I (pdf)

·         Lecture 8II: Function Approximation II (pdf)

·          期中考參考答案

·         Lecture 10: Hyper-plane fitting & Quadratic surface fitting

·         Lecture 11I: Linear system pdf PROBLEM SET solutions

·         Lecture 11II: LinearSystemII 2015EX10

·         Lecture 11III: Scaled Partial Pivoting

·         Lecture 12: Iterative linear system solving: Jacobi, Gauss Seidel and SOR Methods

·         Nonlinear system solving 2015 2015EX11

·         Richardson extrapolation & RK4 2015EX12

·         Lecture 13: Numerical Differentiation

·         Lecture 14: Initial Value Problem of ODE  Lecture9II Chaotic_system

·         Lecture 15: Nonlinear System Solving

·         Lecture 16: Radial Basis Function

·         Lecure 17: Chaos Time Series pdf

·         2013_NM_Problem_set

·         2014  NM Problem Set

·         Lecture: Linear data separation and nonlinear data separation pdf

·         Lecture: Linear recursive relations pdf

·         Lecture: Noninear Recursive Relations pdf

·         Lecture10-II pdf ex8

·         Problem sets pdf exercise solutions

·         Reference: Slides for MATLAB programming I

·         Reference: Slides for MATLAB programming II

·         Reference: Slides for MATLAB programming II

·         Numerical mathematics and computing, four Edition, Cheney & Kincaid

·         Online slides

·         Lecture slides: 數值方法

·         Numerical methods with MATLAB:Implementation and application, G. Rechtenwald

o    http://web.cecs.pdx.edu/~gerry/nmm/

科目代碼

AM__30000

科目名稱

數值方法

授課老師

吳建銘

開課班級

學三(A210)

每週授課時數

3 (/4/5/6)

校內分機

3531

教師電子郵件

[email protected]

教師辦公室

A426

會談時間

 

課程助教

 

助教電子郵件

 

助教工作項目

 

課程目標

This course introduces fundamental numerical methods and their implementations using Matlab programming. The preliminary study includes reviews on matrix manipulations, control flows and Matlab coding. The core course mainly introduces numerical methods for root finding, polynomial interpolation, hyper-plane fitting, linear system solving, integration, differentiation, initial value problem, least square approximation and nonlinear system solving. Advanced topics for nonlinear function approximation and chaotic time series prediction will be given based on well developed MATLAB toolboxes of computational intelligence.

教學方法

Lectures and Exercises

教學評量

Midterm 30%+Final 30%+ Exercise 30%+ General

Performance 10%

課堂教材

Textbook and Lecture Slides

其他教材

Course Homepage 數值方法

作業備註

 

其他標題

 

其他內容

 

 

 

週次

進度

重要事項

1

Matlab programming

Exercise 1

2

Taylor expansion

Exercise 2

3

Root Finding

Exercise 3

4

Numerical Integration & Sympson rule

Exercise 4

5

Lagrange Polynomial & Polynomial Interpolation

Exercise 5

6

Spline Interpolation

Exercise 6

7

Polynomial Approximation (fitting)

Exercise 7

8

One-dimensional function approximation

 

9

期中考試週 Midterm Exam

Exercise 8

10

Hyper-plan fitting & quadratic surface fitting

Exercise 9

11

Linear system & Scaled Partial Pivoting

Exercise 10

12

Jacobi, Gauss Seidel and SOR Methods

Exercise 11

13

Numerical Differentiation

Exercise 12

14

Initial Value Problem of ODE

Exercise 13

15

Nonlinear System Solving

Exercise 14

16

Radial Basis Funcion

Exercise 15

17

Chaos Time Series

 

18

Final Exam