Swift optional
variables



1 /% This 1s the start of the first multiline comment.
2 /* This 1s the second, nested multiline comment. %/
3 This i1s the end of the first multiline comment. x/



1

let cat = "& "
// Prints "&i "

; print(cat)



S~ W N =

let decimallnteger = 17

let binaryInteger = 0b10001
let octallnteger = 0021

let hexadecimallnteger = 0x11

// 17 in binary notation
// 17 in octal notation
// 17 in hexadecimal notation



e 1.25e2 means 1.25 X 102, or 125.0.
e 1.25e-2 means 1.25 X 10‘2, or 9.0125.



1 let http40@4Error = (404, "Not Found")
2 // http4@4Error is of type (Int, String), and equals (404, "Not Found")



Optionals

You use optionals in situations where a value may be absent. An optional represents two
possibilities: Either there is a value, and you can unwrap the optional to access that value, or

there isn’t a value at all.



The example below uses the initializer to try to convert a String into an Int:

1 let possibleNumber = "123"
2 let convertedNumber = Int(possibleNumber)
3 // convertedNumber is inferred to be of type "Int?", or "optional Int"



Because the initializer might fail, it returns an optional Int, rather than an Int. An optional
Int is written as Int?, not Int. The question mark indicates that the value it contains is
optional, meaning that it might contain some Int value, or it might contain no value at all. (It
can’t contain anything else, such as a Bool value or a String value. It's either an Int, orit's
nothing at all.)



Nil
You set an optional variable to a valueless state by assigning it the special value nil:

var serverResponseCode: Int? = 404

// serverResponseCode contains an actual Int value of 404
serverResponseCode = nil

// serverResponseCode now contains no value

S~ W N =



NOTE

You can't use nil with non-optional constants and variables. If a constant or variable in your code
needs to work with the absence of a value under certain conditions, always declare it as an

optional value of the appropriate type.



If you define an optional variable without providing a default value, the variable is
automatically set to nil for you:

1 var surveyAnswer: String?
2 // surveyAnswer 1is automatically set to nil



If an optional has a value, it's considered to be “not equal to” nil:

if convertedNumber != nil {
print("convertedNumber contains some integer value.")

}

// Prints "convertedNumber contains some integer value."

S~ W NN -



O 00 N OO U1 & W NN =

let names = ["Anna", "Alex", "Brian", "Jack"]
let count = names.count
for i in @..<count {
print("Person \(i + 1) is called \(names[i])")

I3

// Person 1 is called Anna
// Person 2 is called Alex
// Person 3 1is called Brian
// Person 4 is called Jack



O 0 dJ OO U0 Ao W N =

S S
N R o

for name in names[2...] {
print(name)

s

// Brian

// Jack

for name in names[...2] {
print(name)

s

// Anna

// Alex

// Brian



or o W N =

for name in names[..<2] {
print(name)

s

// Anna

// Alex



© 00O J O U &~ W NN =

let names = ["Anna", "Alex", "Brian", "Jack"]
let count = names.count
for i in @..<count {
print("Person \(i + 1) is called \(names[i])")

s

// Person 1 is called Anna

// Person 2 is called Alex

// Person 3 is called Brian
// Person 4 is called Jack



=~ W N =

let range = ...5
range.contains(7)
range.contains(4)
range.contains(-1)

// false
// true
// true



