Binomial theorem Pascal Triangular Generating Function 2-8

Sequence

Power Series

$F(x) = \sum_{n=0}^{\infty} a_n x^n$

- A very powerful enumerative tool
- encoding the values of a sequence

 $\{a_n : n \geq 0\}$

• they can be manipulated just like ordinary functions, i.e., they can be added, subtracted and multiplied, and for our purposes, we generally will not care if the power series con-verges,

Basic Notation and Terminolog

With a sequence $\sigma = \{a_n : n \geq 0\}$ of real numbers, we associate a "function" $F(x)$ defined by

$$
F(x) = \sum_{n=0}^{\infty} a_n x^n.
$$

- The word "function" is put in quotes as we do not necessarily care about substituting
- a value of x and obtaining a specific value for $F(x)$. In other words, we consider $F(x)$
- as a formal power series and frequently ignore issues of convergence

Example $\sigma = \{a_n : n \geq 0\}$ with $a_n = 1$

• $F(x)=?$

Operations:Addition, Subtraction and multiplication

$$
-\overline{X} = (x) = 1 + x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

-
$$
X = x + x + x + \dots
$$

Maclaurin series

 $F(x) = |+x + x^2 + ... = \frac{1}{1-x}$ $\sqrt{-} (x) = 1 + 2x + 3x^{2} + \cdots$ $=\sum_{n=1}^{\infty} n x^{n-1}$ $N=1$ $= \frac{D - (-1)}{(1 - \chi)^{2}} = \frac{1}{(1 - \chi)^{2}}$

•

$$
\overline{\bigcap}(x) = \frac{1}{1 - x} = 1 + x + x^2 + \cdots
$$

$$
\overline{\bigcap}(x) = \frac{1}{1 + x} = 1 - x + x^2 + \cdots
$$

$$
\int \overline{F}(x) dx = \log(1+x)
$$

= $x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \frac{1}{4}x^{4}$...

Product of Two Power Sequences

$$
\bigwedge_{n=0}^{n} (x) = \sum_{n=0}^{m} a_n x^n
$$

$$
\bigwedge_{n=0}^{n} (x) = \sum_{n=0}^{m} b_n x^n
$$

$$
\bigwedge_{n=0}^{n} (x) = \bigwedge_{n=0}^{n} (x) \cdot B(x) = \sum_{n=0}^{m} C_n x^n
$$

$$
\bigwedge_{n=0}^{n} \bigwedge_{k=0}^{n} a_k b_{n-k}
$$

Example

• how many ways are there to distribute n apples to one child so that each child receives at least one apple?

• Let a_n denote the answer

$$
F(x) = X + X^2 + X^3 + \cdots
$$

denotes a general:ng

$$
\int u \text{ ncf. on } f \text{ or } \{Q_n : n > 1\}
$$

$$
F(x) = X(1 + X + X + \cdots) = \frac{X}{1 - X}
$$

 $(x+x^2+1)(x+x^2+1)(x+x^2+1)(x+x^2+1)(x+x^2+1)$ $Q_{\mathcal{S}}^{\mathcal{S}} = C \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ $Q_{n} \chi^{n} = Q_{n} \chi^{k_{1}+k_{2}+k_{3}+k_{4}+k_{5}}$ $w_{1} + w_{2} = k_{1} + k_{2} + k_{3} + k_{4} + k_{5}$ $k_1, k_2, k_3, k_4, k_5 > 1$

• Returning to the general question here, we're really dealing with distributing n apples to 5 children, and since $k > 0$ for $i = 1, 2, \ldots, 5$, we also have the guarantee that each child receives at least one apple, so the product of the generating function for one child gives the generating function for five children

$$
(x+x^2+...)(x+x^
$$

coefficient on x^n in this series $C(n-1,4)$,

Example

• A grocery store is preparing holiday fruit baskets for sale. Each fruit bas-ket will have 20 pieces of fruit in it, chosen from apples, pears, oranges, and grapefruit. How many different ways can such a basket be prepared if there must be at least one apple in a basket, a basket cannot contain more than three pears, and the number of oranges must be a multiple of four

at least one Apple $\frac{X}{1-X}$ three peaks at most $1 + X + X^2 + X^3$ unrestricted grapoftaits $\frac{1}{1-X}$ 0.4,8,12, . oranges $\frac{1}{1-x^{4}}$

 $\frac{\chi}{1-\chi} \left(1+\chi+\chi^2+\chi^3\right) \left(\frac{1}{1+\chi^4}\right) \left(\frac{1}{1-\chi}\right)$ = $\frac{x}{1-x} \frac{(1-x^4)}{1-x} \frac{1}{1-x^4} \frac{1}{1-x^2}$ = $X \cdot \frac{1}{(1-x)^3} = \frac{x}{2} \frac{d^2}{\frac{1}{2}x^2} + \frac{1}{x}$

 $\frac{X}{2}$ $\frac{d}{dx}$ $\sum_{n=0}^{\infty}$ X^{n} $=\frac{1}{2}\sum_{n=1}^{\infty}n(n-1)X^{n-2}$ $= \sum_{n=1}^{n=0} \frac{n(n-1)}{2} \chi^{n-1} = \sum_{n=1}^{\infty} {n \choose 2} \chi^{n-1}$ $n = 0$ Answer: C(n+1,2)

Example

• Find the number of integer solutions to the equation

 $x_1 + x_2 + x_3 = n$

 $(n \geq 0$ an integer) with $x_1 \geq 0$ even, $x_2 \geq 0$, and $0 \leq x_3 \leq 2$.

$$
\frac{1 + x + x^2}{(1 - x)(1 - x^2)} = \frac{1 + x + x^2}{(1 + x)(1 - x)^2}.
$$

$$
\frac{1 + x + x^2}{(1 + x)(1 - x)^2} = \frac{A}{1 + x} + \frac{B}{1 - x} + \frac{C}{(1 - x)^2}
$$

$$
1 + x + x2 = A(1 - x)2 + B(1 - x2) + C(1 + x).
$$

\n
$$
1 = A + B + C
$$

\n
$$
1 = -2A + C
$$

\n
$$
1 = A - B
$$

 $A = 1/4$, $B = -3/4$, and $C = 3/2$.

$$
\frac{1}{4}\frac{1}{1+x} - \frac{3}{4}\frac{1}{1-x} + \frac{3}{2}\frac{1}{(1-x)^2} = \frac{1}{4}\sum_{n=0}^{\infty}(-1)^n x^n - \frac{3}{4}\sum_{n=0}^{\infty}x^n + \frac{3}{2}\sum_{n=0}^{\infty}nx^{n-1}.
$$

$$
\frac{(-1)^n}{4} - \frac{3}{4} + \frac{3(n+1)}{2},
$$

The Binomial Theorem

• The coefficient of x^{n-k} y^k in the expansion

Example

$x=1, y=1$

 $\mathbf 1$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\overline{2}$ $\mathbf{1}$ $\mathbf{1}$ $3\overline{)}$ 3 $\mathbf{1}$ 6 $\overline{4}$ $\overline{4}$ $\mathbf{1}$ $\mathbf 1$ 10 10 $5⁵$ $5\overline{)}$ $\mathbf{1}$ $\mathbf{1}$ 15 20 15 66 $\mathbf{1}$ 6 $\mathbf 1$ $7 \qquad 21 \qquad 35 \qquad 35 \qquad 21 \qquad 7$ 1 $\mathbf{1}$ 56 70 56 28 28 8 $\mathbf{1}$ 8 $\mathbf{1}$

Identities in Pascal's Triangle

$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$

•

$$
\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n}
$$

$$
= \qquad \binom{n-1}{0} - \left[\binom{n-1}{0} + \binom{n-1}{1} \right] + \left[\binom{n-1}{1} + \binom{n-1}{2} \right]
$$

$$
+\cdots+(-1)^{n-1}\left[\binom{n-1}{n-2}+\binom{n-1}{n-1}\right]+(-1)^n\binom{n-1}{n-1},
$$

$$
\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n} = 0,
$$

$1^2 = 1$, $1^2 + 1^2 = 2$. $1^2 + 2^2 + 1^2 = 6.$ $1^2 + 3^2 + 3^2 + 1^2 = 20$, $1^2 + 4^2 + 6^2 + 4^2 + 1^2 = 70.$

$$
{\binom{n}{0}}^2 + {\binom{n}{1}}^2 + {\binom{n}{2}}^2 + \dots + {\binom{n}{n-1}}^2 + {\binom{n}{n}}^2 = {\binom{2n}{n}}
$$

Selecting n elements from S is considered as selecting k elements from the first half set and n-k elements from the second half set

 $\binom{211}{n}$ $= \left(\begin{array}{c} n \\ 0 \end{array}\right) \left(\begin{array}{c} n \\ n \end{array}\right) + \left(\begin{array}{c} n \\ 1 \end{array}\right) \left(\begin{array}{c} n \\ n-1 \end{array}\right) \cdots$ $+ \binom{n}{k} \binom{n}{n-k} + \cdots + \binom{n}{n} \binom{n}{0}$

Newton's Binomial Theorem

 $(1+x)^p = \sum_{n=0}^p \binom{p}{n} x^n.$

what happens if we encounter $(1+x)^{\wedge}p$ as a generating function with p not a positive integer

Recursive Definition

when $p \ge k > 0$ (*k* an integer). $P(p,0) = 1$ $P(p,k) = pP(p-1,k-1)$

 $\binom{p}{k} = \frac{P(p,k)}{k!}$

Definition

- Definition For all real numbers p and nonnegative integers k, the number P(p,k) is defined by
- 1. $P(p,0) = 1$ for all real numbers p and
- 2. P(p,k) =pP(p−1,k−1)for all real numbers p and integers k>0

Definition

- Definition. For all real numbers p and nonnegative integers k
- Note that $P(p,k) = C(p,k) = 0$ when p and k are integers with 0≤p<k. On the other hand, we have some interesting new concepts such as P(-5,4) = $(-5)(-6)(-7)(-8)$

$$
\binom{-7/2}{5} = \frac{(-7/2)(-9/2)(-11/2)(-13/2)(-15/2)}{5!}.
$$

Theorem 8.9. For all real p with $p \neq 0$,

$$
(1+x)^p = \sum_{n=0}^{\infty} \binom{p}{n} x^n.
$$