
Gentzen's deduction 
system 



 We use variables for the 
labels, and a packet labeled with x 
cons is t ing o f occur rences o f the 
proposition P is written as x: P.  

Thus, in a sequent Γ → P, the expression Γ 
is any finite set of the 
for m x1: P1,...,xm: Pm,where the xi are 
pairwise distinct (but the Pi need not be 
dis-tinct). Given Γ = x1: P1,...,xm: Pm, the 
notation Γ,x: P is only well defined when 
x     xi for all i, 1 ≤ i ≤ m, in which case it 
denotes the set x1: P1,...,xm: Pm,x: P. 



A sequent

•  



Definition 1.2. The axioms and inference rules of the 
system  

(implicational 
logic, Gentzen-sequent style (the G in N G stands 
for Gentzen)) are listed below: 
                           Γ,x: P → P(Axioms)
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• Definition 1.3. The axioms, inference rules, and 
deduction trees for (propositional) classical logic 
are defined as follows. 

• Axioms: 

• (i) Every one-node tree labeled with a single 
proposition P is a deduction tree for P with set of 
premises {P} 



(ii) The tree 

is a deduction tree for P with multiset of premises Γ ∪{P}. 



The ⇒-introduction rule: 
If D is a deduction of Q from the premises in Γ ∪{P}, the 
is a deduction tree for P ⇒ Q from Γ. All premises P 
labeled x are discharged 



The ⇒-elimination rule (or modus ponens): 
If D1  is a deduction tree for P ⇒ Q from the 
premises Γ, and D2. is a deduction 
for P from the premises Δ, the 

is a deduction tree for Q from the premises in 
Γ ∪Δ 



The ∧-introduction rule: 
If D1 is a deduction tree for P from the premises Γ, and D2is a 
deduction for Q 
from the premises Δ, then 

is a deduction tree for P∧Q from the premises in Γ ∪Δ 



The ∧-elimination rule: 
If D is a deduction tree for P∧Q from the premises Γ, 
then 

are deduction trees for P and Q from the premises Γ 



The ∨-introduction rule: 
If D is a deduction tree for P or for Q from the premises Γ, then 

are deduction trees for P∨Q from the premises in Γ 



The ⇒-elimination rule (or modus ponens): 
If D1 is a deduction tree for P ⇒ Q from the premises Γ, 
and D2 is a deduction 
for P from the premises Δ, then 

is a deduction tree for Q from the premises in Γ ∪Δ ∪Λ. 
All premises P labeled x 
and all premises Q labeled y are discharged 



The ⊥-elimination rule: 
If D is a deduction tree for ⊥ from the premises Γ, then 

is a deduction tree for P from the premises Γ, for any 
proposition P 



The proof-by-contradiction rule (also known as reductio 
ad absurdum rule, for 
short RAA): 
If D is a deduction tree for ⊥ from the premises in Γ 
∪{¬P}, then 

is a deduction tree for P from the premises Γ. All 
premises ¬P labeled x, are dis- 
charged. 



Because ¬P is an abbreviation for P⇒⊥, 
the ¬-introduction rule is a special case 
of the ⇒-introduction rule (with Q =⊥). 



The ¬-introduction rule: 
If D is a deduction tree for ⊥ from the premises in Γ ∪{P}, 
then 

is a deduction tree for ¬P from the premises Γ. All premises 
P labeled x, are dis-charged. 



The above rule can be viewed as a proof-by-
contradiction principle applied to 
negated propositions. 
Similarly, the ¬-elimination rule is a special case of ⇒-
elimination applied to 
¬P(= P ⇒⊥) and P 



Definition 1.4. The axioms and inference rules 
of the system 

(of 
propositional classical logic, Gentzen-sequent 
style) are listed below 













A deduction tree is either a one-node tree labeled 
with an axiom or a tree con- 
structed using the above inference rules.  

A proof tree is a deduction tree whose con- 
clusion is a sequent with an empty set of premises 
(a sequent of the form / 0 → P) 



The rule (⊥-elim) is trivial (does nothing) when 
P=⊥, therefore from now on we 
assume that P   ⊥. Propositional minimal logic, 
denoted  

, is obtained by dropping the (⊥-elim) and (by-
contra) rules. Propositional intuitionistic logic, 
denoted  

, is obtained by dropping the (by-contra) rule 



 a proposition P is provable from Γ, we mean 
that we can construct a proof tree whose 
conclusion is P and whose set of premises is Γ, 
in one of the systems  



 When P is prov- 
able from Γ, most people write Γ   P, or    Γ → P, 
sometimes with the name of the 
corresponding proof system tagged as a 
subscript on the sign     if necessary to avoid 
ambiguities. When Γ is empty, we just say P is 
provable (provable in intuitionistic 
logic, and so on) and write    P



We treat logical equivalence as a derived connective: 
that is, we view P ≡ Q as 
an abbreviation for (P ⇒ Q)∧(Q ⇒ P). In view of the 
inference rules for ∧, we see 
that to prove a logical equivalence P ≡ Q, we just 
have to prove both implications 
P ⇒ Q and Q ⇒ P 



Could we Interpret ¬P as “P is not provable.” ? 

Indeed, if ¬P and P were both provable, 
then ⊥ would be provable. So, P should not be 
provable if ¬P is. However, if P is not 
provable, then ¬P is not provable in general. 
There are plenty of propositions such 
that neither P nor ¬P is provable (for instance, P, 
with P an atomic proposition). 
Thus, the fact that P is not provable is not 
equivalent to the provability of ¬P and 
we should not interpret ¬P as “P is not provable.” 



 For example, if remain1(n) is the proposition that 
asserts n is a whole number of the form 4k+1 and 
remain3(n) is the proposition 
that asserts n is a whole number of the form 4k+3 
(for some whole number k), then 
we can prove the implication 
(remain1(n)∨remain3(n)) ⇒ odd(n) 



The proof-by-contradiction rule formalizes the 
method of proof by contradiction. 
That is, in order to prove that P can be 
deduced from some premises Γ, one may 
assume the negation ¬P of P (intuitively, 
assume that P is false) and then derive a 
contradiction from Γ and ¬P (i.e., derive falsity). 
Then, P actually follows from Γ 
without using ¬P as a premise, that is, ¬P is 
discharged. For example, let us prove 
by contradiction that if n^2 is odd, then n itself 
must be odd, where n is a natural 
number 



Proposition 1.1. The proposition P∨¬P is provable in 
classical logic 


