
Mathematical Reasoning,
Proof Principles, and

Logic .

• construct and read
mathematical
proofs

Motivation
• Computer scientists and engineers write

programs and build systems.
• It is very important to have rigorous methods

to check that these programs and systems
behave as expected (are correct, have no
bugs).

• It is also important to have methods to
analyze the complexity of programs (time/
space complexity）

• What are basic
reasoning principles and
rules of logic?

• What is a proof?

• Proofs can be very informal,
using a set of loosely defined
logical rules, possibly
omitting steps and premises

• Proofs can be completely formal,
using a very clearly defined set of
rules and premises.

• Such proofs are usually processed
or produced by programs called
proof checkers and theorem
provers

• It should be said that it is practically
impossible to write formal proofs.

• This is because it would be extremely
tedious and time-consuming to write
such proofs and these proofs would
be huge and thus, very hard to read

• In principle, it is possible
to write formalized proofs
and sometimes it is
desirable to do so if we
want to have absolute
confidence in a proof.

• A flight-control system is not buggy
so that a plane does not
accidentally crash

• A program running a nuclear
reactor will not malfunction,

• Nuclear missiles will not be fired as
a result of a buggy “alarm system"

• For example

• However, 99.99% of
us will not have the
time or energy to
write formal proofs

• it is important to understand
clearly what are the rules of
reasoning that we use when
we construct informal proofs

axioms and proof rules (also
called inference rules)

 constructing proofs

In mathematics, we prove statements.

Statements may be atomic or compound,

A compound statement is built up from simpler
statements using logical connectives,

such as implication (if–then), conjunction
(and), disjunction (or), negation (not), and
(existential or
universal) quantifiers

1. “A student is eager to learn.”
2. “A student wants an A.”
3. “An odd integer is never 0.”
4. “The product of two odd
integers is odd.”

Atomic statements may also
contain “variables” (standing
for arbitrary objects).
For example
1. human(x): “x is a human.”
2. needs-to-drink(x): “x” needs
to drink

An example of a compound statement is
human(x) ⇒ needs-to-drink(x)

∀x(human(x) ⇒ needs-to-drink(x));
This is read: “For every x, if x is a
human then x needs to drink.”

∃x(human(x) ⇒ needs-to-drink(x));
This is read: “There is some x such
that, if x is a human then x needs
to drink.

We often denote statements (also
cal led proposit ions or (logical)
formulae) using letters,
such as A,B,P,Q, and so on, typically
upper-case letters (but sometimes
Greek letters, ϕ, ψ, etc.)

conjunction
 P∧Q (say, P and Q)

P and Q are statements, then their
conjunction is denoted P∧Q (say, P and Q),

their disjunction denoted P∨Q (say, P or Q),

disjunction
P∨Q

 their implication P⇒Q or P⊃Q (say, if P then Q).

implication
P⇒Q

.
The atomic statements ⊥ (falsity),
which corresponds to false

The atomic statement T (truth),
which corresponds to true

Constant ⊥ is also called falsum
or absurdum.

Then, it is convenient to
define the negation of P as P ⇒⊥ and to
abbreviate it as ¬P (or sometimes ~ P).

Thus, ¬P (say, not P) is just a shorthand
for P ⇒⊥.

Cause
confusing

¬P = (P ⇒⊥) is true if and only if P is not
true

because if both P and P ⇒⊥ were
true then we could conclude that ⊥ is
true, an absurdity,

and if both P and P ⇒⊥ were false then P
would have to be both true and false,
again, an absurdity.

One true one not true

¬P is provable iff for every proof of P we can
derive a contradiction (namely, ⊥ is
provable). In particular, P should not be
provable.

For example, ¬(Q∧¬Q) is provable (as
we show later, because any proof of
Q∧¬Q yields a proof of ⊥).

However, the fact that a proposition P is
not provable does not imply that ¬P is
provable. There are plenty of propositions
such that both P and ¬P are not
provable,
such as Q ⇒ R, where Q and R are two
unrelated propositions (with no common
symbols

matching parentheses

Whenever necessary to avoid
ambiguities, we add matching
parentheses: (P∧Q), (P∨Q),(P⇒Q).

For example, P∨Q∧R is ambiguous; it
means either (P∨(Q∧R)) or
((P∨Q)∧R).

equivalence
If P and Q are statements,
then their equivalence, denoted
P ≡ Q is an abbreviation for
(P ⇒ Q)∧(Q ⇒ P).

We often say “P if and only if Q” or
even “P iff Q” for P ≡ Q.

As we show shortly, to prove
a logical equivalence
P ≡ Q, we have to prove
both implications
P ⇒ Q and Q ⇒ P

An implication P ⇒ Q should be understood as an
if–then statement; if P is true then Q is also true.

A better interpretation is that any proof of P ⇒ Q
can be used to construct a proof of Q given any
proof of P.

As a consequence of this interpretation,
we show later that if ¬P is provable, then
P ⇒ Q is also provable (instantly)
whether or not Q is provable. In such a
situation, we often say that P⇒Q
However, we have to wait until Section
1.3 to see this)

For example, (P∧¬P) ⇒ Q is
provable for any arbi t rary Q
(because if we assume that P∧¬P is
p ro v a b l e , t h e n w e d e r i v e a
contradiction,
and then another rule of logic tells us
that any proposition whatsoever is
provable.

Typically, the statements that we prove
depend on some set of hypotheses, also
called premises (or assumptions).

As we show shortly, this amounts to
proving implications of the form
(P1∧P2∧···∧Pn) ⇒ Q.

However, there are certain advantages in
defining the notion of proof (or deduction)
of a proposition from a set of premises.

Sets of premises are usually denoted
using upper-case Greek letters such as Γ
or Δ.

Roughly speaking, a deduction of a
proposition Q from a set of premises
Γ is a finite labeled tree whose root is
labeled with Q (the conclusion),
whose leaves are
labeled with premises from Γ
(possibly with multiple occurrences),
and such that every interior node
corresponds to a given set of proof
rules (or inference rules). Certain
simple deduction trees are declared
as obvious proofs, also called axioms

 A natural deduction system

• mathematical logic
• G. Gentzen in the early 1930s

(thoroughly investi-gated by
D. Prawitz in the mid 1960s

 David Hilbert, 1862–1943

 Gerhard Gentzen, 1909–1945
(middle right),

and Dag Prawitz, 1936– (right

The major advantage

It captures quite nicely the “natural”
rules of reasoning that one uses when
proving mathematical statements.

This does not mean that it is easy to
find proofs in such a system or that
this system is indeed very intuitive

How do we proceed to prove an
implication, A ⇒ B

• The rule, called ⇒-intro, is: assume
that A has already been proven
and then prove B, making as many
uses of A as needed.

odd(n) ⇒ odd(n+2)

if we assume odd(n), then we can
conclude odd(n+2)

Note that the effect of rule ⇒-intro is to introduce
the premise odd(n), which was temporarily
assumed, into the left-hand side of the
proposition odd(n) ⇒ odd(n+2).
This is why this rule is called the implication
introduction

Following the rule ⇒-intro, we assume odd(n) (which
means that we take as proven the fact that n is odd)
and we try to conclude that n+2 must be odd. However,
to say that n is odd is to say that n = 2k+1 for some
whole number k. Now,
n+2 = 2k+1+2 = 2(k+1)+1,
which means that n+2 is odd. (Here, n = 2h+1, with h =
k+1, and k+1 is a
whole number because k is.)
Therefore, we proved that if

After having applied the rule ⇒-intro,
we should really make sure that the
premise odd(n) which was made
temporarily active is deactivated, or
as we say, discharged.

When we write informal proofs, we
rarely (if ever) explicitly discharge
premises when we apply the rule ⇒-
intro but if we want to be rigorous we
really should

.
According to our rule, we
assume P as a premise and we
try prove Q ⇒ P assuming P.

Premise {P,Q},
Prove P from {P,Q}P ⇒ (Q ⇒ P)

In order to prove Q ⇒ P, we assume Q as a new premise so
the set of premises becomes {P,Q}, and then we try to prove
P from P and Q. This time, it should be obvious that P is
provable because we assumed both P and Q

one of the basic axioms of our logic

P is always provable from any
set of assumptions including
P itself

So, we have obtained a proof
of P ⇒ (Q ⇒ P).

P ⇒ ((P ⇒ Q) ⇒ Q)

If P and P ⇒ Q are both provable, then Q is provable

What is not entirely satisfactory about the above
“proof” of P ⇒ (Q ⇒ P)
is that when the proof ends, the premises P and Q
are still hanging around as “open”
assumptions. However, a proof should not depend
on any “open” assumptions and
to rectify this problem we introduce a mechanism
of “discharging” or “closing”
premises

What this means is that certain rules of our logic are
required to discard (the usual
terminology is “discharge”) certain occurrences of
premises so that the resulting
proof does not depend on these premises

Technically, there are various ways of
implementing the discharging mechanism
but they all involve some form of tagging
(with a “new” variable). For example, the
rule formalizing the process that we have
just described to prove an implication,
A ⇒ B, known as ⇒-introduction, uses a
tagging mechanism described precisely in
Definition 1.1

For example, after a moment of thought, I
think most people would
want the proposition P ⇒ ((P ⇒ Q) ⇒ Q) to
be provable.
If we follow the procedure that we have
advocated, we assume both P and P ⇒ Q
and we try to prove Q.
For this, we need a new rule, namely:
If P and P ⇒ Q are both provable, then Q is
provable.

The above rule is known as the ⇒-
elimination rule and it is
formalized in tree-form in Definition 1.1

 a deduction tree

root

the multiset, a set possibly with multiple
occurrences of its members). Some of the
propos in Δ may be tagged by variables.
The list of untagged propositions in Δ is
the list of premises of the deduction tree

A deduction tree

 the conclusion is S

A label

the proposition R is the result of
applying the ⇒-elimination rule to
the two premises Q ⇒ R and Q.
Thus, the use of the bar is just a
convention used by logicians
going back at least to the 1900s.
Removing the bar
everywhere would not change
anything in our trees, except
perhaps reduce their
readability.

Because propositions do not arise from the
vacuum but instead are built up from
a set of atomic propositions using logical
connectives (here, ⇒), we assume the ex-
istence of an “off icial set of atomic
propositions,” or set of propositional symbols,
PS = {P1,P2,P3,...}. So, for example, P1⇒ P2
and P1⇒ (P2⇒ P1) are propo-sitions.

Definition 1.1. The axioms, inference rules,
and deduction trees for implicational logic
are defined as follows.
Axioms.
(i) Every one-node tree labeled with a single

proposition P is a deduction tree for P with
set of premises {P}.

(ii) The tree

is a deduction tree for P with multiset set of
premises, Γ ∪{P}

The ⇒-introduction rule

If is a deduction tree for Q from the
premises in Γ ∪{P}, then

is a deduction tree for P ⇒ Q from Γ

The ⇒-elimination rule.
If is a deduction tree for P ⇒ Q from the
premises Γ and is a deduction for P from the
premises Δ, then

is a deduction tree for Q from the premises in Γ
∪Δ.

A deduction tree is either a one-node tree
labeled with a single proposition or a
tree constructed using the above axioms and
rules.

A proof tree is a deduction tree such that all its
premises are discharged.

 The above proof system is denoted

(here, the subscript m stands for minimal,
referring to the fact that this a bare-bones logical
system).

Observe that a proof tree has at least two
nodes. A proof tree Π for a proposition
P may be denoted
Π
P
with an empty set of premises

