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• construct and read 
mathematical 
proofs



Motivation
• Computer scientists and engineers write 

programs and build systems. 
• It is very important to have rigorous methods 

to check that these programs and systems 
behave as expected (are correct, have no 
bugs). 

• It is also important to have methods to 
analyze the complexity of programs (time/
space complexity） 



• What are basic 
reasoning principles and 
rules of logic? 



• What is a proof? 

• Proofs can be very informal, 
using a set of loosely defined 
logical rules, possibly 
omitting steps and premises



• Proofs can be completely formal, 
using a very clearly defined set of 
rules and premises.  

• Such proofs are usually processed 
or produced by programs called 
proof checkers and theorem 
provers 



• It should be said that it is practically 
impossible to write formal proofs.  

• This is because it would be extremely 
tedious and time-consuming to write 
such proofs and these proofs would 
be huge and thus, very hard to read 



• In principle, it is possible 
to write formalized proofs 
and sometimes it is 
desirable to do so if we 
want to have absolute 
confidence in a proof.



• A flight-control system is not buggy 
so that a plane does not 
accidentally crash 

• A program running a nuclear 
reactor will not malfunction,  

• Nuclear missiles will not be fired as 
a result of a buggy “alarm system"

• For example



• However, 99.99% of 
us will not have the 
time or energy to 
write formal proofs 



• it is important to understand 
clearly what are the rules of 
reasoning that we use when 
we construct informal proofs 



axioms and proof rules (also 
called inference rules) 

 constructing proofs 



In mathematics, we prove statements.  

Statements may be atomic or compound, 

A compound statement is built up from simpler 
statements using logical connectives, 

such as implication (if–then), conjunction 
(and), disjunction (or), negation (not), and 
(existential or 
universal) quantifiers 



1. “A student is eager to learn.” 
2. “A student wants an A.” 
3. “An odd integer is never 0.” 
4. “The product of two odd 
integers is odd.” 



Atomic statements may also 
contain “variables” (standing 
for arbitrary objects). 
For example 
1. human(x): “x is a human.” 
2. needs-to-drink(x): “x” needs 
to drink 



An example of a compound statement is 
human(x) ⇒ needs-to-drink(x) 

∀x(human(x) ⇒ needs-to-drink(x)); 
This is read: “For every x, if x is a 
human then x needs to drink.” 



∃x(human(x) ⇒ needs-to-drink(x)); 
This is read: “There is some x such 
that, if x is a human then x needs 
to drink.



We often denote statements (also 
cal led proposit ions or ( logical) 
formulae) using letters,  
such as A,B,P,Q, and so on, typically 
upper-case letters (but sometimes 
Greek letters, ϕ, ψ, etc.) 



conjunction
 P∧Q (say, P and Q) 

P and Q are statements, then their 
conjunction is denoted P∧Q (say, P and Q), 



their disjunction denoted P∨Q (say, P or Q), 

disjunction
P∨Q 

 their implication P⇒Q or P⊃Q (say, if P then Q).  

implication
P⇒Q



. 
The atomic statements ⊥ (falsity), 
which corresponds to false  

The atomic statement T (truth), 
which corresponds to true  

Constant ⊥ is also called falsum 
or absurdum. 



Then, it is convenient to 
define the negation of P as P ⇒⊥ and to 
abbreviate it as ¬P (or sometimes ~ P). 

Thus, ¬P (say, not P) is just a shorthand 
for P ⇒⊥. 

Cause 
confusing



  
¬P = (P ⇒⊥) is true if and only if P is not 
true  
--------------------------------------------------------- 
because if both P and P ⇒⊥ were 
true then we could conclude that ⊥ is 
true, an absurdity,  

and if both P and P ⇒⊥ were false then P 
would have to be both true and false, 
again, an absurdity. 

One true one not true 



¬P is provable iff for every proof of P we can 
derive a contradiction (namely, ⊥ is 
provable). In particular, P should not be 
provable. 



For example, ¬(Q∧¬Q) is provable (as 
we show later, because any proof of 
Q∧¬Q yields a proof of ⊥). 



However, the fact that a proposition P is 
not provable does not imply that ¬P is 
provable. There are plenty of propositions 
such that both P and ¬P are not 
provable, 
such as Q ⇒ R, where Q and R are two 
unrelated propositions (with no common 
symbols 



matching parentheses

Whenever necessary to avoid 
ambiguities, we add matching 
parentheses: (P∧Q), (P∨Q),(P⇒Q). 

For example, P∨Q∧R is ambiguous; it 
means either (P∨(Q∧R)) or  
((P∨Q)∧R). 



equivalence
If P and Q are statements, 
then their equivalence, denoted  
P ≡ Q  is an abbreviation for  
(P ⇒ Q)∧(Q ⇒ P).  

We often say “P if and only if Q” or 
even “P iff Q” for P ≡ Q. 



As we show shortly, to prove 
a logical equivalence  
P ≡ Q, we have to prove 
both implications  
P ⇒ Q and Q ⇒ P 



An implication P ⇒ Q should be understood as an 
if–then statement; if P is true then Q is also true.  

A better interpretation is that any proof of P ⇒ Q 
can be used to construct a proof of Q given any 
proof of P.  



As a consequence of this interpretation, 
we show later that if ¬P is provable, then 
P ⇒ Q is also provable (instantly) 
whether or not Q is provable. In such a 
situation, we often say that P⇒Q 
However, we have to wait until Section 
1.3 to see this)



For example, (P∧¬P) ⇒ Q is 
provable for any arbi t rary Q 
(because if we assume that P∧¬P is 
p ro v a b l e , t h e n w e d e r i v e a 
contradiction, 
and then another rule of logic tells us 
that any proposition whatsoever is 
provable. 



Typically, the statements that we prove 
depend on some set of hypotheses, also 
called premises (or assumptions).  

As we show shortly, this amounts to 
proving implications of the form 
(P1∧P2∧···∧Pn) ⇒ Q. 



However, there are certain advantages in 
defining the notion of proof (or deduction) 
of a proposition from a set of premises.  

Sets of premises are usually denoted 
using upper-case Greek letters such as Γ 
or Δ. 



Roughly speaking, a deduction of a 
proposition Q from a set of premises 
Γ is a finite labeled tree whose root is 
labeled with Q (the conclusion), 
whose leaves are 
labeled with premises from Γ 
(possibly with multiple occurrences), 
and such that every interior node 
corresponds to a given set of proof 
rules (or inference rules). Certain 
simple deduction trees are declared 
as obvious proofs, also called axioms 





 A natural deduction system 

•  mathematical logic 
•  G. Gentzen in the early 1930s 

(thoroughly investi-gated by 
D. Prawitz in the mid 1960s 



 David Hilbert, 1862–1943  



 Gerhard Gentzen, 1909–1945  
(middle right), 

and Dag Prawitz, 1936– (right 



The major advantage

It captures quite nicely the “natural” 
rules of reasoning that one uses when 
proving mathematical statements.  

This does not mean that it is easy to 
find proofs in such a system or that 
this system is indeed very intuitive 



How do we proceed to prove an 
implication, A ⇒ B 

• The rule, called ⇒-intro, is: assume 
that A has already been proven 
and then prove B, making as many 
uses of A as needed. 



odd(n) ⇒ odd(n+2) 

if we assume odd(n), then we can 
conclude odd(n+2) 

Note that the effect of rule ⇒-intro is to introduce 
the premise odd(n), which was temporarily 
assumed, into the left-hand side of the 
proposition odd(n) ⇒ odd(n+2).  
This is why this rule is called the implication 
introduction 



Following the rule ⇒-intro, we assume odd(n) (which 
means that we take as proven the fact that n is odd) 
and we try to conclude that n+2 must be odd. However, 
to say that n is odd is to say that n = 2k+1 for some 
whole number k. Now, 
n+2 = 2k+1+2 = 2(k+1)+1, 
which means that n+2 is odd. (Here, n = 2h+1, with h = 
k+1, and k+1 is a 
whole number because k is.) 
Therefore, we proved that if  



After having applied the rule ⇒-intro, 
we should really make sure that the 
premise odd(n) which was made 
temporarily active is deactivated, or 
as we say, discharged.  

When we write informal proofs, we 
rarely (if ever) explicitly discharge 
premises when we apply the rule ⇒-
intro but if we want to be rigorous we 
really should 



. 
According to our rule, we 
assume P as a premise and we 
try prove Q ⇒ P assuming P. 

Premise {P,Q}, 
Prove P from {P,Q}P ⇒ (Q ⇒ P)

In order to prove Q ⇒ P, we assume Q as a new premise so 
the set of premises becomes {P,Q}, and then we try to prove 
P from P and Q. This time, it should be obvious that P is 
provable because we assumed both P and Q 



one of the basic axioms of our logic

P is always provable from any 
set of assumptions including 
P itself 

So, we have obtained a proof 
of P ⇒ (Q ⇒ P). 



P ⇒ ((P ⇒ Q) ⇒ Q) 

If P and P ⇒ Q are both provable, then Q is provable 



What is not entirely satisfactory about the above 
“proof” of P ⇒ (Q ⇒ P)  
is that when the proof ends, the premises P and Q 
are still hanging around as “open” 
assumptions. However, a proof should not depend 
on any “open” assumptions and 
to rectify this problem we introduce a mechanism 
of “discharging” or “closing” 
premises



What this means is that certain rules of our logic are 
required to discard (the usual 
terminology is “discharge”) certain occurrences of 
premises so that the resulting 
proof does not depend on these premises 



Technically, there are various ways of 
implementing the discharging mechanism 
but they all involve some form of tagging 
(with a “new” variable). For example, the 
rule formalizing the process that we have 
just described to prove an implication, 
A ⇒ B, known as ⇒-introduction, uses a 
tagging mechanism described precisely in 
Definition 1.1 



For example, after a moment of thought, I 
think most people would 
want the proposition P ⇒ ((P ⇒ Q) ⇒ Q) to 
be provable.  
If we follow the procedure that we have 
advocated, we assume both P and P ⇒ Q 
and we try to prove Q. 
For this, we need a new rule, namely: 
If P and P ⇒ Q are both provable, then Q is 
provable. 



The above rule is known as the ⇒-
elimination rule and it is 
formalized in tree-form in Definition 1.1 



 a deduction tree 

root

the multiset, a set possibly with multiple 
occurrences of its members). Some of the 
propos in Δ may be tagged by variables. 
The list of untagged propositions in Δ is 
the list of premises of the deduction tree 



A deduction tree

 the conclusion is S 



A label



the proposition R is the result of 
applying the ⇒-elimination rule to 
the two premises Q ⇒ R and Q. 
Thus, the use of the bar is just a 
convention used by logicians 
going back at least to the 1900s. 
Removing the bar 
everywhere would not change 
anything in our trees, except 
perhaps reduce their 
readability. 



Because propositions do not arise from the 
vacuum but instead are built up from 
a set of atomic propositions using logical 
connectives (here, ⇒), we assume the ex-
istence of an “off icial set of atomic 
propositions,” or set of propositional symbols, 
PS = {P1,P2,P3,...}. So, for example, P1⇒ P2 
and P1⇒ (P2⇒ P1) are propo-sitions. 



Definition 1.1. The axioms, inference rules, 
and deduction trees for implicational logic 
are defined as follows. 
Axioms. 
(i) Every one-node tree labeled with a single 

proposition P is a deduction tree for P with 
set of premises {P}. 

(ii) The tree 

is a deduction tree for P with multiset set of 
premises, Γ ∪{P} 





The ⇒-introduction rule 

If     is a deduction tree for Q from the 
premises in Γ ∪{P}, then 

  

is a deduction tree for P ⇒ Q from Γ 



The ⇒-elimination rule. 
If         is a deduction tree for P ⇒ Q from the 
premises Γ and         is a deduction for P from the 
premises Δ, then 

is a deduction tree for Q from the premises in Γ 
∪Δ.  



A deduction tree is either a one-node tree 
labeled with a single proposition or a 
tree constructed using the above axioms and 
rules. 

A proof tree is a deduction tree such that all its 
premises are discharged. 



 The above proof system is denoted  

(here, the subscript m stands for minimal, 
referring to the fact that this a bare-bones logical 
system). 



Observe that a proof tree has at least two 
nodes. A proof tree Π for a proposition 
P may be denoted 
Π 
P 
with an empty set of premises 


