Topics

- L. Lovász
- J. Pelikán
- K. Vesztergombi

Discrete Mathematics

Elementary and Beyond

4

Fibonacci Numbers

A	T-1 • I	•	TAT	1
/ I	HIDON	2001	1 1 1	mbers
I	TINOTI	acci	1 1 U	ITITOCIO

4.1 Fibonacci's Exercise	•	(
--------------------------	---	---

- 4.2 Lots of Identities
- 4.3 A Formula for the Fibonacci Numbers .

In the thirteenth century, the Italian mathematician Leonardo Fibonacci studied the following (not too realistic) question:

Leonardo Fibonacci

A farmer raises rabbits. Each rabbit gives birth to one rabbit when it turns 2 months old, and then to one rabbit each month thereafter. Rabbits never die, and we ignore male rabbits. How many rabbits will the farmer have in the nth month if he starts with one newborn rabbit?

Graphs

7.1	Even	and	Oc	dd	Degrees	•	•	•	•	•	•	•	•	•	•
-----	------	-----	----	----	---------	---	---	---	---	---	---	---	---	---	---

- 7.2 Paths, Cycles, and Connectivity....
- 7.3 Eulerian Walks and Hamiltonian Cycles

8 Trees

8.1	How to Define Trees
8.2	How to Grow Trees
8.3	How to Count Trees?
8.4	How to Store Trees
8.5	The Number of Unlabeled Trees

9 Finding the Optimum

- 9.1 Finding the Best Tree
- 9.2 The Traveling Salesman Problem

10 Matchings in Graphs

10.1	A Dancing Problem
10.2	Another matching problem
10.3	The Main Theorem
10.4	How to Find a Perfect Matching

13 Coloring Maps and Graphs

13.1	Coloring Regions with Two Colors
13.2	Coloring Graphs with Two Colors
13.3	Coloring graphs with many colors
13.4	Map Coloring and the Four Color Theorem

Cambridge Books Online

http://ebooks.cambridge.org/

Topics in Finite and Discrete Mathematics

Sheldon M. Ross

Book DOI: http://dx.doi.org/10.1017/CBO9780511755354

Online ISBN: 9780511755354

Hardback ISBN: 9780521772594

Paperback ISBN: 9780521775717

Chapter

3 - Probability pp. 70-96

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755354.004

Cambridge University Press

Sections 1-5

Chapter

Sections 1-5

3 - Probability pp. 70-96

4. Mathematics of Finance Sections 1-5

Chapter

5 - Graphs and Trees pp. 124-149 Sections 1-5Chapter

6 - Directed Graphs pp. 150-179 Sections 1-4

Chapter

7 - Linear Programming pp. 180-202

Sections 1-4

Chapter

8 - Sorting and Searching pp. 203-219

Sections 1,2-6

4. Mathematics of Finance

Sections 1-5

4.1 Interest Rates

If you borrow the amount P (called the principal) which must be repaid at time T along with simple interest at rate r per time T, then the amount to be repaid at time T is

$$P + rP = (1+r)P.$$

$$P\lim_{n\to\infty}(1+r/n)^n=Pe^r,$$

where e, the base of the natural logarithm, is defined by

$$e = \lim_{n \to \infty} (1 + 1/n)^n$$

and is approximately given by $e \approx 2.71828 \dots$

Chapter

5 - Graphs and Trees pp. 124-149

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755354.006

Cambridge University Press

Sections 1-5

Τ

Ŧ

Figure 5.1: A Graph

Figure 5.2: A Path from 1 to 6: 1, 2, 3, 5, 6

Figure 5.3: A Cycle: 1, 2, 5, 1

Figure 5.4: A Graph with Three Components

Figure 5.5: The Complete Graph on Four Vertices

Figure 5.6: Trees

Chapter

6 - Directed Graphs pp. 150-179

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755354.007

Cambridge University Press

Sections 1-4

000

The Maximum Flow Problem

151

Figure 6.1: Directed Graph with

$$\mathcal{A} = \{(1, 2), (1, 4), (2, 3), (2, 4), (3, 6), (4, 3), (4, 5), (5, 6)\}$$

下午11:14 沒有服務 죽

Topics in Finite and Discrete Mathematics

Figure 6.2: Edge Capacities and a Feasible Flow

Theorem 6.2.1 (Max-Flow Min-Cut Theorem)

$$\max_{f} v(f) = \min_{f} c(X, \bar{X}).$$

沒有服務 🗢 下午11:15

Topics in Finite and Discrete Mathematics

000

Figure 6.15: A Directed Graph with Costs

For instance, in the directed graph depicted in Figure 6.15, interpreting the numbers on the e edge distances yields that BOTA 177/272 the leasth of the moth 1

7 - Linear Programming pp. 180-202

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755354.008

Cambridge University Press

Sections 1-4

maximize $1 + x_1 + x_2 + x_3$

subject to

$$1 - x_1 \ge 0$$
,

$$1 - 3x_1 - x_2 \ge 0,$$

$$1 + x_1 - 3x_2 - x_3 \ge 0,$$

$$1 + x_1 + x_2 - 3x_3 \ge 0;$$

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$.

49% ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

Paperback ISBN: 9780521775717

Chapter

8 - Sorting and Searching pp. 203-219

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755354.009

Cambridge University Press

Sections 1,2-6

5 3 8 7 0 9 6 4 1,

then (with the bar indicating the value that is to be compared with its immediate follower) the successive orderings in the first pass are as follows:

$$3\bar{5}8709641$$
,

$$35\bar{8}709641$$
,

$$357\bar{8}09641$$
,