
An introduction to 
combinatorics （IV-1)





 three principal themes
• Discrete Structures : Graphs, digraphs, networks, 

designs, posets, strings, patterns, distributions, 
coverings, and partitions. 

• Enumeration:  Permutations, combinations, 
inclusion/exclusion, generating functions, 
recurrence relations, and counting. 

• Algorithms and Optimization : Sorting, spanning 
trees, shortest paths, eulerian circuits, hamiltonian 
cycles, graph coloring, planarity testing, network 
flows, bipartite, matchings, and chain partition



Enumeration
• Many basic problems in combinatorics 

involve counting the number of 
distributions of objects into cells—where 
we may or may not be able to 
distinguish between the objects and the 
same for the cells. Also, the cells may 
be arranged in patterns. Here are 
concrete examples.



• How many ways to give ten dollars to 
three children? 







•  Now suppose that Amanda has ten 
books, in fact the top 10 books from the 
New York Times best-seller list, and 
decides to give them to her children. How 
many ways can she do this? Again, we 
note that there is a hidden assumption—
the ten books are all different 







 How would we possibly answer 
these kinds of questions if ten was 
really ten thousand (OK, we’re not 
talking about children any more!) and 
three was three thousand? Could you 
write the answer on a single page in 
a book 





How many different necklaces of six beads 
can be formed using three reds, two blues 
and one green? 

 How many different necklaces of six beads 
can be formed using red, blue and 
green beads (not all colors have to be 
used)? 



 How many different necklaces of six beads 
can be formed using red, blue and 
green beads if all three colors have to be 
used? 
 How would we possibly answer these 
questions for necklaces of six thousand 
beads made with beads from three 
thousand different colors? What special soft- 
ware would be required to find the exact 
answer and how long would the com- 

l o n g

putation take? 



 Combinatorics and Graph Theory 

A graph G consists of a vertex set V and a 
collection E of 2-element subsets of V. Ele- 
ments of E are called edges. In our course, 
we will (almost always) use the convention 
that V= {1,2,3,...,n}for some positive integer 
n. 



 With this convention, graphs can 
be described precisely with a text file: 
1. The first line of the file contains a single 
integer n, the number of vertices in the 
graph 
2. Each of the remaining lines of the file 
contains a pair of distinct integers and 
specifies an edge of the graph 







 G has 9 vertices and 10 edges. 
2.{2,6}is an edge. 
3. Vertices 5 and 9 are adjacent. 
4.{5,4}is not an edge. 
5. Vertices 3 and 7 are not adjacent. 
6. P= (4,3,1,7,9,5)is a path of length 5 from 
vertex 4 to vertex 5. 
7. C= (5,9,7,1)is cycle of length 4. 
8. G is disconnected and has two components. 
One of the components has vertex 
set{2,6,8}. 
9.{1,5,7}is a triangle. 
10.{1,7,5,9}is a clique of size 4. 
11.{4,2,8,5}is an independent set of size 4 





1. What is the largest k for which G has a 
path of length k? 
2. What is the largest k for which G has a 
cycle of length k? 
3. What is the largest k for which G has a 
clique of size k? 
4. What is the largest k for which G has an 
independent set of size k? 
5. What is the shortest path from vertex 7 to 
vertex 6 





Example 1.2. In Figure 1.4, we show the 
location of some radio stations in the plane, 
together with a scale indicating a distance 
of 200 miles. Radio stations that are closer 
than 200 miles apart must broadcast on 
different frequencies to avoid interference 



We’ve shown that 6 different frequencies are enough. Can 
you do better? 
Can you find 4 stations each of which is within 200 miles of 
the other 3? Can you 
find 8 stations each of is more than 200 miles away from 
the other 7? Is there a natural 
way to define a graph associated with this problem? 
Example 1.3. How big must an applied combinatorics 
class be so that there are either 
(a) six students with each pair having taken at least one 
other class together, or (b) six 
students with each pair together in a class for the first 
time.Is this really a hard 
problem or can we figure it out in just a few minutes, 
scribbling on a napkin 



 Combinatorics and Number Theory 

•  

Broadly, number theory concerns itself with 
the properties of the positive integers. 
G .H . Hardy was a b r i l l i an t B r i t i sh 
mathematician who lived through both World 
Wars and conducted a large deal of number-
theoretic research. He was also a pacifist 
who was happy that, from his perspective, 
his research was not “useful”. He wrote in his 
1940 essay A Mathematician’s Apology “ 



•  “[n]o one has yet discovered any 
warlike purpose to be served by the 
theory of numbers or relativity, and it 
seems very unlikely that anyone will do 
so for many years.”



• Little did he know, the purest 
mathematical ideas of number theory 
would soon become indispensable for 
the cryptographic techniques that kept 
communications secure. Our subject 
here is not number theory, but we will 
see a few times where combinatorial 
techniques are of use in number theory 



Example 1.4. Form a sequence of 
positive integers using the following 
rules. Start with a positive integer n>1. If 
n is odd, then the next number is 3n+1. If 
n is even, then the next number is n/2. 
Halt if you ever reach 1. For example, if 
we start with 28, the sequence is 



 For example, if we start with 28, the 
sequence is 
28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4
,2,1. 
Now suppose you start with 19. Then the first 
few terms are 
19,58,29,88,44,22 
But now we note that the integer 22 appears in 
the first sequence, so the two sequences 
will agree from this point on. Sequences 
formed by this rule are called Collatz 
sequences 



Pick a number somewhere between 100 and 
200 and write down the sequence you 
get. Regardless of your choice, you will 
eventually halt with a 1. However, is there 
some positive integer n (possibly quite large) 
so that if you start from n, you will never 
reach 1 



 Combinatorics and Geometry 

•  

Example 1.7. In Figure 1.5, we show a 
family of 4 lines in the plane. Each pair of 
lines intersects and no point in the plane 
belongs to more than two lines. These 
lines determine 11 regions 





Under these same restrictions, how 
many regions would a family of 8947 
l ines de- termine? Can d i f fe rent 
arrangements of l ines determine 
different numbers of regions? 



 Combinatorics and Optimization 

•  



•  

Q1:What is the shortest path from 
vertex E to vertex B? 
Suppose Ariel is a salesperson whose 
home base is city A. 
Q2:In what order should Ariel visit the 
other cities so that she goes through 
each of them at least once and returns 
home at the end—while keeping the 
total distance 



traveled to a minimum? Can Ariel accomplish 
such a tour visiting each city exactly 
once? 
Sanjay is a highway inspection engineer and 
must traverse every highway each 
month. Sanjay’s homebase is City E. 
Q3:In what order should Sanjay traverse the 
highways to minimize the total distance 
traveled? Can Sanjay make such a tour traveling 
along each highway exactly once? 





Example 1.11. Now suppose that the vertices 
are locations of branch banks in Atlanta 
and that the weights on an edge represents 
the cost, in millions of dollars, of building 
a high capacity data link between the branch 
banks at it two end points. In this model, 
if there is no edge between two branch banks, 
it means that the cost of building a data 
link between this particular pair is prohibitively 
high (here we might be tempted to say 
the cost is infinite, but the authors don’t admit 
to knowing the meaning of this word) 



Our challenge is to decide which data links 
should be constructed to form a network 
in which any branch bank can communicate 
with any other branch. We assume that 
data can flow in either direction on a link, 
should it be built, and that data can be 
relayed through any number of data links. So 
to allow full communication, we should 
construct a spanning tree in this network. In 
Figure 1.8, we show a graph G on the left 
and one of its many spanning trees on the 
right 





Of all spanning trees, the bank 
would naturally like to find one 
having minimum 
weight 



 Sudoku Puzzles 
Example 1.12. A Sudoku puzzle is a 9×9 array of cells 
that when completed have the 
integers 1,2,...,9 appearing exactly once in each row and 
each column. Also (and this 
is what makes the puzzles so fascinating), the numbers 1, 
2, 3,...,9 appear once in 
each of the nine 3×3 subquares identified by the 
darkened borders. To be considered 
a legitimate Sudoku puzzle, there should be a unique 
solution. In Figure 1.9, we show 
two Sudoku puzzles. The one on the right is fairly easy, 
and the one on the left is far 
more challenging 



There are many sources of Sudoku puzzles, 
and software that generates Sudoku 
puzzles and then allows you to play them with 
an attractive GUI is available for all 
operating systems we know anything about 
(although not recommend to play them 
during class!). Also, you can find Sudoku 
puzzles on the web at On this site, the “Evil” 
ones are just that 





How does Rory make up good Sudoku puzzles, ones 
that are difficult for Mandy to 
solve? How could Mandy use a computer to solve 
puzzles that Rory has constructed? 
What makes some Sudoku puzzles easy and some of 
them hard? 
The size of a Sudoku puzzle can be expanded in an 
obvious way, and many newspa- 
pers include a 16×16 Sudoku puzzle in their Sunday 
edition (just next to a challenging 
crosswords puzzle). How difficult would it be to solve a 
1024×1024 Sudoku puzzle, 
even if you had access to a powerful computer 



• Sudoku associative memory

http://www.sciencedirect.com/science/article/pii/S0893608014001312

