Discrete Math 2018

課 程 名稱	課程大綱	評量方式
離散數學	 Logic: Propositonal logic, Predicate Logic Basic Structures: Sets, Functions, Sequences, Sums, Matrices Introduction to Algorithms Number Theory and Cryptography: Divisibility, Modular Arithmetic, Integer Representations, Primes, Greatest Common Divisors, the Chinese Remainder Theorem, Cryptography Counting: Permutations, Combinations, Binomial Coefficients and Identities Recurrence Relations Relations: Relations and their properties, Equivalence Relations, Partial Orderings) 	1. 課程 參 與(10%) 2. 作業 (20%) 3. 報告 (20%) 4. 期末 考(50%)

These notes are courtesy of Eric Lehman, Tom Leighton, and Albert Meyer, and are used with permission.

CHAPTERS	FILES
Complete course notes	(<u>PDF - 3.2MB</u>)
Part I: Proofs	
Chapter 1: Propositions	(<u>PDF</u>)
Chapter 2: Patterns of proof	(<u>PDF</u>)
Chapter 3: Induction	(<u>PDF</u>)
Chapter 4: Number theory	(<u>PDF</u>)
Part II: Structures	
Chapter 5: Graph theory	(<u>PDF</u>)
Chapter 6: Directed graphs	(<u>PDF</u>)
Chapter 7: Relations and partial orders	(<u>PDF</u>)
Chapter 8: State machines	
Part III: Counting	
Chapter 9: Sums and asymptotics	(<u>PDF</u>)
Chapter 10: Recurrences	(<u>PDF</u>)
Chapter 11: Cardinality rules	(<u>PDF</u>)
Chapter 12: Generating functions	(<u>PDF</u>)
Chapter 13: Infinite sets	(<u>PDF</u>)
Dent TV/, Denkelsiller	

• <u>Mit</u>

Mathematics for Computer Science

revised Wednesday 8th September, 2010, 00:40

Eric Lehman Google Inc.

F Thomson Leighton

Department of Mathematics and CSAIL, MIT Akamai Technologies

Albert R Meyer

Massachusets Institute of Technology

<u>Stanford</u>

that you're able to join us.

I'll see you for our first day of class 3:00 PM - 4:20 PM in STLC 111! (STLC is the Old Chemistry building near the Oval.)

If you have any questions in the meantime, feel free to email me at **cbl@cs.stanford.edu**.

See you soon!

- Assignment Handout
- Starter Files
- LaTeX Template
- PSet 2 checkpoint submission form
- Solutions

Problem Set 1

- Assignment Handout
- Starter Files
- LaTeX Template
- Checkpoint SolutionsSolutions
- Solutions

Problem Set 0

• Starter Files

Practice Problems

Practice Final Exam 6 (solutions) **Practice Final Exam 5** (solutions) **Practice Final Exam 4** (solutions) **Practice Final Exam 3** (solutions) **Practice Final Exam 2** (solutions) **Practice Final Exam 1** (solutions) **Extra Practice Problems 3** (solutions) **Practice Second Midterm 6 (dress** rehearsal exam) (solutions) **Practice Second Midterm 5** (solutions) **Practice Second Midterm 4** (solutions) **Practice Second Midterm 3**

- 13: Induction
- Slides
- 12: Induction Slides

11: Graphs II: Pigeonhole Slides

- 10: Graphs I Slides (Part 1) Slides (Part 2)
- 09: Cardinality Slides

08: Binary Relations III Slides

07: Binary Relations II Slides

06: Binary Relations Slides

05: More Predicate Logic Slides

04: Predicate Logic Slides

03: Propositional Logic Slides

02: Indirect Proofs
Slides

01: Proof-Writing Slides

00: Set Theory Slides

13: Induction Slides 12: Induction Slides 11: Graphs II: Pigeonhole Slides 10: Graphs I Slides (Part 1) Slides (Part 2) 09: Cardinality Slides 08: Binary Relations III Slides 07: Binary Relations II Slides 06: Binary Relations Slides 05: More Predicate Logic Slides 04: Predicate Logic Slides 03: Propositional Logic Slides 02: Indirect Proofs Slides 01: Proof-Writing Slides

Proofs Chapter 1: Propositions Chapter 2: Patterns of proof Chapter 3: Induction Chapter 4: Number theory Part II: Structures Chapter 5: Graph theory Chapter 6: Directed graphs Chapter 7: Relations and partial orders Chapter 8: State machines Part III: Counting Chapter 9: Sums and asymptotics Chapter 10: Recurrences Chapter 11: Cardinality rules Chapter 12: Generating functions Chapter 13: Infinite sets Part IV: Probability Chapter 14: Events and probability spaces Chapter 15: Conditional probability Chapter 16: Independence Chapter 17: Random variables and distributions Chapter 18: Expectation

Resources

Course Reader CS103A Website Guide to \in and \subseteq **Qt Creator Office Hours Calendar** Truth Table Tool **Guide to Negations Guide to Logic Translations** Guide to Cantor's Theorem **DFA/NFA Editor Regex Editor Regex Equivalence Tester CFG Editor TM Editor Guide to Self-Reference** Guide to the Lava Diagram

Preliminary Course Notes

Keith Schwarz

Fall 2015

Notes on Discrete Mathematics

James Aspnes

2018-06-26 19:31

Applied Combinatorics

Preliminary Edition

February 15, 2015

Mitchel T. Keller Washington & Lee University

William T. Trotter Georgia Institute of Technology

E books of NDHU

1 🗌	An Introduction To Programming And Numerical Methods In Matlab
2 🔽	Computational Discrete Mathematics
3 🔽	Discrete Mathematics
4	Numerical Analysis For Statisticians
5 🔽	Discrete Mathematics - Elementary And Beyond
6	A Guide to MATLAB Object-Oriented Programming
7	Numerical Methods for Unconstrained Optimization and Nonlinear Equations
8 🔽	Discrete Mathematics of Neural Networks: Selected Topics
9 🗌	Numerical Methods in Scientific Computing, Volume I
10 🗌	Topics in Finite and Discrete Mathematics
11 🔽	Discrete mathematics: elementary and beyond