
Mathematical logic 
Chapter 2


 NOTES ON DISCRETE MATHEMATICS



2.1 The basic picture 



Axioms, models, and inference 
rules 

• A list of axioms that are true statements about the model 

• A list of inference rules

• Derive new true statements from the axioms 



THEORY

•  The axioms and inference rules together generate a 
theory 

•  A Theory that consists of all statements that can be 
constructed from the axioms by applying the inference 
rules. 



Example
• All fish are green (axiom). George Washington is a fish 

(axiom). 


• From “all X are Y” and “Z is X”, we can derive “Z is 
Y” (inference rule). Thus George Washington is green 
(theorem).


• Theories are attempts to describe models. A model is 
typically a collection of objects and relations between 
them. 


•



Consistency
•  A theory is consistent if it can’t prove both P and not-P for any 

P. 


•  Too many axioms, 


• you can get an inconsistency: “All fish are green; all sharks 
are not green; all sharks are fish; George Washington is a 
shark” gets us into trouble pretty fast.


• If we don’t throw in enough axioms, we under-constrain the 
model. 


•



 The Peano axioms for the 
natural numbers 

• There is a number 0 and that any number x has a 
successor S(x) (think of S(x) as x + 1). 


• If we stop there, we might have a model that contains 
only 0, with S(0) = 0. If we add in 0    S(x) for any x, then 
we can get stuck at S(0) = 1 = S(1). 


• If we add yet another axiom that says S(x) = S(y) if and 
only if x = y, then we get all the ordinary natural numbers 
0,S(0) = 1,S(1) = 2, etc., but we could also get some 
extras: say 0′, S(0′) = 1′, S(1′) = 0′. 

≠



•  0 is a natural number.


• The next four axioms describe the equality relation. Since they are logically valid in first-order logic 
with equality, they are not considered to be part of "the Peano axioms" in modern treatments.[5]


• For every natural number x, x = x. That is, equality is reflexive.


• For all natural numbers x and y, if x = y, then y = x. That is, equality is symmetric.


• For all natural numbers x, y and z, if x = y and y = z, then x = z. That is, equality is transitive.


• For all a and b, if b is a natural number and a = b, then a is also a natural number. That is, the 
natural numbers are closed under equality.


• The remaining axioms define the arithmetical properties of the natural numbers. The naturals are 
assumed to be closed under a single-valued "successor" function S.


• For every natural number n, S(n) is a natural number.


• For all natural numbers m and n, m = n if and only if S(m) = S(n). That is, S is an injection.


• For every natural number n, S(n) = 0 is false. That is, there is no natural number whose successor 
is 0.
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 The language of logic  

•  The basis of mathematical logic is propositional logic 


• The model is a collection of statements that are either true or false. 


• An axiom : George Washington is a fish


• To prove the truth of more complicated statements


•  George Washington is a fish or 2+2=5 


•



 predicate logic  

•  constants (stand-ins for objects in the model like 
“George Washington”) and predicates (stand-ins for 
properties like “is a fish”) 


•



Statements

•  For all x, if x is a fish then x is green.


•  As a bonus, we usually get functions (“f(x) = the number 
of books George Washington owns about x”)


•  Equality (“George Washington = 12” implies “George 
Washington + 5 = 17”) 


•



 Standard axiom systems and 
models  

•  The natural numbers N.


•   The integers Z. 


•   The rational numbers Q. 


•   The real numbers R. 


•  The complex numbers C.  

•  The universe of sets.  

•   

•  

•



  2.2 Propositional logic  

•  Propositional logic is the simplest form of logic 


•  the only statements that are considered are 
propositions, which contain no variables. 


•  



•  Examples of propositions: 
• 2 + 2 = 4. (Always true). 
• 2 + 2 = 5. (Always false). 


•     Examples of non-propositions: 


•  • x+2=4. (May be true, may not be true; it depends on the value of 
x.) 
• x · 0 = 0. (Always true, but it’s still not a proposition because of the 
variable.) 


• x · 0 = 1. (Always false, but not a proposition because of the 
variable.) 


•



 Operations on propositions  

•  Negation  

• The negation of p is written as ¬p, or sometimes ∼p, −p or p. It has the property that it is false when p is true, and true when p is false. 


•  Or  

• The or of two propositions p and q is written as p ∨ q, and is true as long as at least one, or possibly both, of p and q is true.


•  Exclusive or  

• If you want to exclude the possibility that both p and q are true, you can use exclusive or instead. This is written as p ⊕ q, and is true precisely 
when exactly one of p or q is true.


•  And  

• The and of p and q is written as p∧q, and is true only when both p and q are true.3 



•   “(2 + 2 = 4) ∧ (3 + 3 = 6).” 


•  Implication  

• This is the most important connective for proofs. An implication represents an “if. . . then” claim. If p implies q, then we write p → q or p ⇒ q, 
depending on our typographic convention and the availability of arrow symbols in our favorite font. 


•  


•   




•  In fact, the only way for p → q to be false is for p to be 
true but q to be false. Because of this, p → q can be 
rewritten as ¬p ∨ q. 


• So, for example, the statements “If 2 + 2 = 5, then I’m the 
Pope”, 


• “If I’m the Pope, then 2 + 2 = 4”, and 


• “If 2 + 2 = 4, then 3 + 3 = 6”, are all true, provided the if/
then is interpreted as implication. 


•





•  Table 2.1: Compound propositions. The rightmost 
column gives alternate forms. Precedence goes from 
strongest for ¬ to weakest for ↔ 


•



 Biconditional 
•  Biconditional  

• Suppose that p → q and q → p, so that either both p and q are 
true or both p and q are false. In this case, we write p↔q or p⇔q, 
and say that p holds if and only if q holds. 


• The  truth of p ↔ q is still just a function of the truth or false hood of p 
and q; though there doesn’t need to be any connection between the 
two sides of the statement, “2+2 = 5 if and only if I am the Pope” is a 
true statement (provided it is not uttered by the Pope). The only way 
for p ↔ q to be false is for one side to be true and one side to be 
false. 


•



 compound proposition

•  The result of applying any of these operations is called a 
compound proposition. 


•



 Precedence  

•  precedence in C-like programming languages 


•  Examples: (¬p∨q∧r→s↔t) is interpreted as ((((¬p)∨(q∧r))→ 
s)↔t) 


•  Both OR and AND are associative, so (p∨q∨r) is the same 
as ((p∨q)∨r) and as (p∨(q∨r)), and similarly (p∧q∧r) is the 
same as ((p∧q)∧r) and as (p∧(q∧r)) 


•



•  Note that this convention is not universal: many 
mathematicians give AND and OR equal precedence, so 
that the meaning of p ∧ q ∨ r is ambiguous without 
parentheses. 


•  a→b→c is read as a→(b→c). Except for type theorists 
and Haskell programmers, few people ever remember 
this, so it is usually safest to put in the parentheses.



 Truth tables  

•   We can think of each row of a truth table as a model for 
propositional logic, since the only things we can describe 
in propositional logic are whether particular propositions 
are true or not. Constructing a truth table corresponds to 
generating all possible models. 


•



•  Proving a proposition using a truth table is a simple 
version of model checking: we enumerate all possible 
models of a given collection of simple propositions, and 
see if what we want to prove holds in all models 


•  For predicate logic, model checking becomes more 
complicated, because a typical system of axioms is likely 
to have infinitely many models, many of which are likely to 
be infinitely large. There we will need to rely much more 
on proofs constructed by applying inference rules. 


•



 Tautologies and logical 
equivalence  

•  A compound proposition that is true no matter what the 
truth-values of the propositions it contains is called a 
tautology. 


• For example, p → p, p ∨ ¬p, and ¬(p ∧ ¬p) are all 
tautologies, as can be verified by constructing truth tables. 


• If a compound proposition is always false, it’s a 
contradiction. The negation of a tautology is a 
contradiction and vice versa 


•



•  The most useful class of tautologies are logical 
equivalences. 


• This is a tautology of the form X ↔ Y , where X and Y are 
compound propositions. In this case, X and Y are said to 
be logically equivalent and we can substitute one for the 
other in more complex propositions. 


• We write X ≡ Y if X and Y are logically equivalent. 


•



•  Boolean formulas that equality does for algebraic 
formulas: if we know (for example), that p ∨ ¬p is 
equivalent to 1, and q ∨ 1 is equivalent to 1, we can grind 
q ∨ p ∨ ¬p ≡ q ∨ 1 ≡ 1 without having to do anything 
particularly clever. 


•













•  contrapositive of p → q is ¬q → ¬p 


•  it is logically equivalent to the original implication. For example, 
the contrapositive of “If I am human then I am a mammal” is “If I 
am not a mammal then I am not human”. 


•  A proof by contraposition demonstrates that p implies q by 
assuming ¬q and then proving ¬p; it is similar but not identical to 
an indirect proof, which assumes ¬p and derives a contradiction. 


•  


•  



•  The inverse of p→q is ¬p→¬q 


•   There is often no connection between the truth of an 
implication and the truth of its inverse: “If I am human 
then I am a mammal” does not have the same truth-value 
as “If I am not human then I am not a mammal,” 


•



•  The converse of p→q is q→p. 


•    the converse of “If I am human then I am a mammal” is 
“If I am a mammal then I am human.” The converse of a 
statement is always logically equivalent to the inverse. 


•



 Equivalences involving true 
and false  

•  law of the excluded middle  


•  P ∨ ¬P ≡ 1 


•  law of non-contradiction 


•  P ∧ ¬P ≡ 0. 


•   


•



 absorption laws  





 Normal forms  

•  A compound proposition is in conjunctive normal form 
(CNF for short) if it is obtained by ANDing together ORs of 
one or more variables or their negations


•  P, (P ∨Q)∧R, (P ∨Q)∧(Q∨R)∧(¬P), and (P ∨Q)∧(P ∨¬R)∧ (¬P 
∨Q∨S ∨T ∨¬U) are in CNF 


•   (P ∨(Q∧R))∧(P ∨¬R)∧(¬P ∨Q) are not 


•



•   A famous Zen koan involves a student going for instruction 
to a sword master who also happens to be a Zen monk. The 
master tells the student “If you draw your sword, I will cut off 
your head. If you do not draw your sword, I will cut off your 
head.” How should the student interpret this alarming 
statement? 


• Writing P for the proposition that the student draws his 
sword and Q for the proposition that the master cuts off his 
head, we can immediately convert this to CNF by expanding 
the implications: 


• (P →Q)∧(¬P →Q)≡(¬P ∨Q)∧(P ∨Q) 

•



•  (¬P ∨Q)∧(P ∨Q)≡(¬P ∧P)∨(¬P ∧Q)∨(Q∧P)∨(Q∧Q) ≡0∨(¬P 
∧Q)∨(Q∧P)∨Q ≡(¬P ∧Q)∨(Q∧P)∨Q. 


• Now the proposition is in disjunctive normal form, which 
means it’s an OR of ANDs. 


•  (P ∨Q)∧(¬P ∨R) → Q∨R 


•



•  Similarly, a compound proposition is in disjunctive 
normal form (DNF) if it consists of an OR of ANDs, e.g. (P 
∧Q)∨(P ∧¬R)∨(¬P ∧Q) 


•



 2.3 Predicate（述詞) logic  

•  Socrates is a man.


• If Socrates is a man, then Socrates is mortal. 


• Therefore, Socrates is mortal. 


•  This is an application of the inference rule called modus 
ponens, which says that from p and p → q you can deduce q. 
The first two statements are axioms (meaning we are given them 
as true without proof), and the last is the conclusion of the 
argument. 


•



 Variables and predicates  

•  • “x is human.” 
• “x is the parent of y.” • “x+2=x2.” 


•  These are not propositions because they have variables 
in them. Instead, they are predicates; statements whose 
truth-value depends on what concrete object takes the 
place of the variable. 


•



•  Predicates are often abbreviated by single capital letters 
followed by a list of arguments, the variables that appear in 
the predicate, e.g.: 


• H(x) = “x is human.”


• P(x,y) = “x is the parent of y.” • 


• Q(x)=“x+2=x2.” 


•  H(Spocrates) = “Spocrates is human.” 


•



•  In first-order logic, which is what we will be using in this 
course, variables always refer to things and never to 
predicates: any predicate symbol is effectively a constant. 
There are higher-order logics that allow variables to refer 
to predicates, but most mathematics accomplishes the 
same thing by representing predicates with sets 


•



 Quantifiers  

•  bind the variables using quantifiers, which state whether 
the claim we are making applies to all values of the 
variable (universal quantification), or whether it may only 
apply to some (existential quantification) 


•



 Universal quantifier  

•  The universal quantifier ∀ (pronounced “for all”) says that 
a statement must be true for all values of a variable within 
some universe of allowed values (which is often implicit). 


•  For example,


• “all humans are mortal” could be written ∀x : Human(x) → 
Mortal(x)


•  “if x is positive then x + 1 is positive” could be written 
∀x : x > 0 → x + 1 > 0. 


•



•  If you want to make the universe explicit, use set membership notation.


• An example would be 


• ∀x∈Z:x>0→x+1>0. 


• This is logically equivalent to writing 


• ∀x : x ∈ Z → (x > 0 → x + 1 > 0) 


• or to writing ∀x : (x ∈ Z ∧ x > 0) → x + 1 > 0, but the short form 
makes it more clear that the intent of x ∈ Z is to restrict the range 
of x. 


•



•   The statement ∀x : P (x) is equivalent to a very large AND; 
for example, ∀x ∈ N : P(x) could be rewritten (if you had an 
infinite amount of paper) as P(0) ∧ P(1) ∧ P(2) ∧ P(3) ∧ ….


• Normal first-order logic doesn’t allow infinite expressions 
like this, but it may help in visualizing what ∀x : P (x) 
actually means. 


• Another way of thinking about it is to imagine that x is 
supplied by some adversary and you are responsible for 
showing that P(x) is true; in this sense, the universal 
quantifier chooses the worst case value of x. 


•



 Existential quantifier  

•   The existential quantifier ∃ (pronounced “there exists”) 
says that a statement must be true for at least one value 
of the variable. So “some human is mortal” becomes ∃x : 
Human(x) ∧ Mortal(x). 


•



•  Note that we use AND rather than implication here; the 
statement ∃x : Human(x) → Mortal(x) makes the much 
weaker claim that “there is some thing x, such that if x is 
human, then x is mortal,” which is true in any universe 
that contains an immortal purple penguin—since it isn’t 
human, Human(penguin) → Mortal(penguin) is true. 


•



•  As with ∀, ∃ can be limited to an explicit universe with set 
membership notation, e.g., ∃x ∈ Z : x = x2. This is 
equivalent to writing ∃x : x ∈ Z∧x = x2. 


•  The formula ∃x : P (x) is equivalent to a very large OR, so 
that ∃x ∈ N : P(x) could be rewritten as 
P(0)∨P(1)∨P(2)∨P(3)∨.... Again, you can’t generally write 
an expression like this if there are infinitely many terms, 
but it gets the idea across. 


•



 Negation and quantifiers  

•  ¬∀x : P (x) ≡ ∃x : ¬P (x). 


• ¬∃x : P (x) ≡ ∀x : ¬P (x). 


•  These are essentially the quantifier version of De 
Morgan’s laws: the first says that if you want to show that 
not all humans are mortal, it’s equivalent to finding some 
human that is not mortal. The second says that to show 
that no human is mortal, you have to show that all 
humans are not mortal. 


•



 Restricting the scope of a 
quantifier  





 Nested quantifiers  

•  It is possible to nest quantifiers, meaning that the 
statement bound by a quantifier itself contains quantifiers. 
For example, the statement “there is no largest prime 
number” could be written as 


• ¬∃x : (Prime(x) ∧ ∀y : y > x → ¬Prime(y)) 
i.e., “there does not exist an x that is prime and any y 
greater than x is not prime.” Or in a shorter (though not 
strictly equivalent) form: ∀x∃y : y > x ∧ Prime(y) 


•



•  If we write likes(x, y) for the predicate that x likes y, the statements  


• ∀x∃y : likes(x, y) 


• ∃y∀x : likes(x, y) 


• The first says that for every person, there is somebody that that person likes: we 
live in a world with no complete misanthropes. 


• The second says that there is some single person who is so immensely popular 
that everybody in the world likes them. 


• The nesting of the quantifiers is what makes the difference: in ∀x∃y : likes(x, y), 
we are saying that no matter who we pick for x, ∃y : likes(x, y) is a true 
statement; while in ∃y∀x : likes(x, y), we are saying that there is some y that 
makes ∀x : likes(x, y) true. 


•



•  for example ∀x∀y : (x = y → x+1 = y+1) is logically 
equivalent to ∀y∀x : (x = y → y + 1 = x + 1), 


• but ∀x∃y : y < x is not logically equivalent to ∃y∀x : y < x. 



•  



•  





•  The latter is the core of a classic “paradox of induction” 
in philosophy


• If seeing a black crow makes me think it’s more likely that 
all crows are black, shouldn’t seeing a logically equivalent 
non-black non-crow (e.g., a banana yellow AMC Gremlin) 
also make me think all non-black objects are non-crows, 
i.e., that all crows are black? The paradox suggests that 
logical equivalence works best for true/false and not so 
well for probabilities. 


•



•  




