
Chapter 3
Set Theory



•  Set theory is the dominant foundation for mathematics. 


• The idea is that everything else in mathematics—
numbers, functions, etc.—can be written in terms of sets, 
so that if you have a consistent description of how sets 
behave, then you have a consistent description of how 
everything built on top of them behaves. 


• If predicate logic is the machine code of mathematics, set 
theory would be assembly language. 


•



•  The nice thing about set theory is that it requires only one 
additional predicate on top of the standard machinery of 
predicate logic. 


• This is the membership or element predicate ∈, where x ∈ 
S means that x is an element of S. Here S is a set—a 
collection of elements—and the identify of S is completely 
determined by which x satisfy x ∈ S. 


• Every other predicate in set theory can be defined in terms 
of ∈. 


•



 Naive set theory  

•  Naive set theory is the informal version of set theory that 
corresponds to our intuitions about sets as unordered 
collections of objects (called elements) with no duplicates.  


• An element of a set may also be a set (in which case it 
contains its own elements), or it may just be some object 
that is not a set (also known as an urelement, which is 
German for “primitive element”) 


•  



•  {} = the empty set ∅, which has no elements.  

• {Moe, Curly, Larry} = the Three Stooges.  

• {0, 1, 2, . . .} = N, the natural numbers. Note that we are relying on  
the reader guessing correctly how to continue the sequence here.  

• {{},{0},{1},{0,1},{0,1,2},7} = a set of sets of natural numbers, plus 
a stray natural number that is directly an element of the outer set.  

•



 Membership
•  Membership in a set is written using the ∈ symbol 

(pronounced “is an element of,” “is a member of,” or just “is 
in”). So we can write Moe ∈ the Three Stooges or 4 ∈ N. We 
can also write   for “is not an element of,” as in Moe    N, and 
the reversed symbol ∋ for “has as an element,” as in N ∋ 4. 


• A fundamental axiom in set theory (the Axiom of 
Extensionality; see §3.4) is that the only distinguishing 
property of a set is its list of members: if two sets have the 
same members, they are the same set.  

•

∉∉



•  For nested sets like {{1}}, ∈ represents only direct membership: 
the set {{1}} only has one element, {1}, so 1    {{1}}. 


• This can be confusing if you think of ∈ as representing the 
English “is in,” because if I put my lunch in my lunchbox and put 
my lunchbox in my backpack, then my lunch is in my backpack. 
But my lunch is not an element of {{my lunch} , my textbook, my 
slingshot}. 


• In general, ∈ is not transitive  
(see §9.3): it doesn’t behave like ≤ unless there is something 
very unusual about the set you are applying it to.  

•

∉



 set comprehension

• A rule for how to generate all of its elements 


• set-builder notation  

•  

•



•  {x|x∈N∧x>1∧(∀y∈N:∀z∈N:yz=x→y=1∨z=1)}=the prime 
numbers.  

• {2x|x∈N}=the even numbers.  

• {x|x∈N∧x<12}={0,1,2,3,4,5,6,7,8,9,10,11}.  

•





•  Some very high-level programming languages like 
Haskell or Python have a similar mechanism called list 
comprehension which does pretty much the same thing 
except the result is an ordered list.  


• {n∈N|∃x,y,z∈N\{0}:xn+yn=zn}. This is a fancy name for {1, 
2}, but this fact is not obvious [Wil95]. 


•



 Operations on sets  



 Corresponding to implication is the notion of a subset:  
• A⊆B (“A is a subset of B”) if and only if ∀x:x∈A→x∈B.


•  A ⊇ B means that A is a superset of B, which is the same 
as saying B ⊆ A. 


•  We can also write A     B to say that A is a not a subset of 
B, and the rather awkward-looking A ︎    B to say that A is 
a proper subset of B, meaning that A ⊆ B but A    B. (The 
standard version A ⊆ B allows the case A = B.) 


•  

•  

⊈

≠



•  Usually we will try to reserve “is in” for ∈ and “is 
contained in” for ⊆, but it’s safest to use the symbols (or 
“is an element/subset of”) to avoid any possibility of 
ambiguity. 


•



•  Sometimes one says A is contained in B if A ⊆ B. 


• This is one of two senses in which A can be “in” B—it is 
also possible that A is in fact an element of B (A ∈ B). 


• For example, the set A = {12} is an element of the set B = 
{Moe, Larry, Curly, {12}}, but A is not a subset of B, 
because A’s element 12 is not an element of B. 


•



 complement

•   ={x| x   A}. The set     is known as the complement of A. 


•

A ∉ A



•  If we allow complements, we are necessarily working 
inside some fixed universe, since the complement U =    
of the empty set contains all possible objects 


•



•  The set theory used in most of mathematics is defined by a 
collection of axioms that allow us to construct, essentially 
from scratch, a universe big enough to hold all of 
mathematics without apparent contradictions while avoiding 
the paradoxes that may arise in naive set theory.


•  However, one consequence of this construction is that the 
universe (a) much bigger than anything we might ever use, 
and (b) not a set, making complements not very useful. The 
usual solution to this is to replace complements with explicit 
set differences: U \ A for some specific universe U instead of 


•



 Proving things about sets  

•  Given x and S, show x ∈ S. This requires looking at the 
definition of S to see if x satisfies its requirements, and 
the exact structure of the proof will depend on what the 
definition of S is. 


•



•  Given S and T , show S ⊆ T . Expanding the definition of 
subset, this means we have to show that every x in S is 
also in T. So a typical proof will pick an arbitrary x in S 
and show that it must also be an element of T . This will 
involve unpacking the definition of S and using its 
properties to show that x satisfies the definition of T. 


•



•  Given S and T, show S = T. Typically we do this by 
showing S ⊆ T and T ⊆ S separately. The first shows that 
∀x : x ∈ S → x ∈ T; the second shows that ∀x : x ∈ T → x 
∈ S. Together, x ∈ S → x ∈ T and x ∈ T → x ∈ S gives x ∈ 
S ↔ x ∈ T, which is what we need for equality. 


•



 corresponding negative 
statements  

•  For x    S, use the definition of S as before.  

• For S     T , we only need a counterexample: pick any one 
element of S and show that it’s not an element of T .  

•









 Axiomatic set theory  

•  The axioms most commonly used are known as 
Zermelo-Fraenkel set theory with choice or ZFC.  


• The short version is that you can construct sets by (a) 
listing their members, (b) taking the union of other sets, (c) 
taking the set of all subsets of a set, or (d) using some 
predicate to pick out elements or subsets of some set. 


•



•  Extensionality Any two sets with the same elements are 
equal.2 


• Existence The empty set ∅ is a set.3 


• Pairing Given sets x and y, {x, y} is a set.4 


• Union For any set of sets S={x,y,z,…}, the set    ︎ S=x∪y∪z∪... 
exists.5 


• Power set For any set S, the power set P(S) = {A | A ⊆ S} 
exists.6 


•

These properties follow from the more useful axioms of ZFC: 





•  吉安鄉男⼠士理理髮師有規定，只能幫沒有理理⾃自⼰己頭髮的男⼠士
理理髮


• 有⼀一位吉安鄉男⼠士理理髮師說：所有吉安鄉沒有幫⾃自⼰己理理髮
的男⼠士的頭髮都是他理理的


• 這位理理髮師有沒有理理他⾃自⼰己頭髮？



 Russell paradox

• https://www.scientificamerican.com/article/what-is-
russells-paradox/ 


• A confusing terminology, “not in”  


• x = {a: a is not in a} leads to a contradiction in the same 
way as the description of the collection of barbers. 
Is x itself in the set x? Either answer leads to a 
contradiction.





 Cartesian products, relations, 
and functions  

•  Sets are unordered: the set {a, b} is the same as the set 
{b, a}. Sometimes it is useful to consider ordered pairs 
(a, b), where we can tell which element comes first and 
which comes second. These can be encoded as sets 
using the rule (a, b) = {{a} , {a, b}} 


•



•  Given sets A and B, their Cartesian product A×B is the set 
{(x, y) | x ∈ A ∧ y ∈ B}, or in other words the set of all ordered 
pairs that can be constructed 
by taking the first element from A and the second from B. If 
A has n 
elements and B has m, then A × B has nm elements.14 For 
example, 
{1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}.  


• A × B     B × A 


•



•  The existence of the Cartesian product of any two sets 
can be proved using the axioms we already have: if (x, y) 
is defined as {{x} , {x, y}}, then    (A ∪ B) contains all the 
necessary sets {x} and {x, y} , and     (    (A ∪ B)) contains 
all the pairs {{x} , {x, y}}. 


•



 functions  

•  A special class of relations are functions. A function from 
a domain A to a codomain15 B is a relation on A and B 
(i.e., a subset of A×B such that every element of A 
appears on the left-hand side of exactly one ordered pair. 


• We write f:A→B as a short way of saying that f is a 
function from A to B, and for each x ∈ A write f(x) for the 
unique y ∈ B with (x,y) ∈ f. 

•



•  The set of all functions from A to B is written as BA: note 
that the order of A and B is backwards here from A → B. 
Since this is just the subset of    (A × B), consisting of 
functions as opposed to more general relations, it exists 
by the Power Set and Specification axioms. 


•
幂集



•  Often, a function is specified not by writing out some 
huge set of ordered pairs, but by giving a rule for 
computing f(x). An example: f(x) = x2.  Particular trivial 
functions can be defined in this way anonymously; 
another way to write f(x) = x2

 is as the anonymous function 
x ︎→ x2. 


•



• f(x) = x2. Note: this single rule gives several different 
functions, e.g. f : R → R, f : Z → Z, f : N → N, f : Z → N. 
Changing the domain or codomain changes the function. 


• f(x)=x+1. 
• Floor and ceiling functions: when x is a real number, the floor of 
x (usually written ⌊x⌋) is the largest integer less than or equal to x 
and the ceiling of x (usually written ⌈x⌉) is the smallest integer 
greater 

than or equal to x. E.g., ⌊2⌋ = ⌈2⌉ = 2, ⌊2.337⌋ = 2, ⌈2.337⌉ 

•



•  The function from {0, 1, 2, 3, 4} to {a, b, c} given by the 
following table:  


    0  a 


    1  c 


    2  b 


    3  a 


    4  b 


•



 Sequences  

•  Functions let us define sequences of arbitrary length: for 
example, the infinite sequence x0, x1, x2, . . . of elements 
of some set A is represented by a function x : N → A.


• A shorter sequence (a0, a1, a2) would be represented by a 
function a : {0, 1, 2} → A. 


•



• The subscript takes the place of a function argument: we 
treat xn  as syntactic sugar for x(n). 


• Finite sequences are often called tuples.  

• We think of the result of taking the Cartesian product of a 
finite number of sets A × B × C as a set of tuples (a, b, c), 
even though the actual structure may be ((a, b), c) or (a, 
(b, c)) depending on which product operation we do first. 


•



•  We can think of the Cartesian product of k sets (where k need not be 2) as 
a set of sequences indexed by the set {1 . . . k} (or sometimes {0 . . . k − 1}). 


• A × B × C, the set of functions from {1, 2, 3} to A∪B∪C with the property that 
for each function f ∈ A×B×C, f(1) ∈ A, f(2) ∈ B, and f(3) ∈ C)


• Technically this means that A × B × C is not the same as (A×B)×C or A × (B 
× C). 


• (A×B)×C, the set of all ordered pairs whose first element is an ordered 
pair in A × B and whose second element is in C


•  A × (B × C), the set of ordered pairs whose first element is in A and 
whose second element is in B × C. 


•





 Functions of more (or less) 
than one argument  

•  If f : A × B → C, then we write f(a,b) for f((a,b)). In general 
we can have a function with any number of arguments 
(including 0); a function of k arguments is just a function 
from a domain of the form A1 ×A2 ×...Ak to some codomain 
B. 


•



 Composition of functions  

•  Two functions f : A → B and g : B → C can be 
composed to give a composition g ◦ f. 


• This is a function from A to C defined by (g ◦ f)(x) = g(f(x)). 
Composition is often implicit in definitions of functions: 
the function x ︎→ x2

 + 1 is the composition of two functions 
x ︎→ x + 1 and x ︎→ x2. 


•



 Functions with special 
properties  

•  We can classify functions f : A → B based on how many 
elements x of the domain A get mapped to each element 
y of the codomain B. 


• If every y is the image of at least one x, f is surjective. 


• If every y is the image of at most one x, f is injective. 


• If every y is the image of exactly one x, f is bijective. 


•



 Surjections  

•  A function f : A → B that covers every element of B is 
called onto, surjective, or a surjection. This means that 
for any y in B, there exists some x in A such that y = f(x). 
An equivalent way to show that a function is surjective is 
to show that its range {f(x) | x ∈ A} is equal to its 
codomain. 


•

• B



•  For example, the function f(x) = x2
  from N to N is not 

surjective, because its range includes only perfect 
squares. The function f(x) = x + 1 from N to N is not 
surjective because its range doesn’t include 0. However, 
the function f (x) = x + 1 from Z to Z is surjective, because 
for every y in Z there is some x in Z such that y = x + 1. 


•



 Injections  

•  If f : A → B maps distinct elements of A to distinct 
elements of B (i.e., if x    y implies f(x)    f(y)), it is called 
one-to-one, injective, or an injection. 


• By contraposition, an equivalent definition is that f(x) = f(y) 
implies x = y for all x and y in the domain. For example, 
the function f(x) = x2

 from N to N is injective. The function 
f(x) = x2  from Z to Z is not injective (for example, f (−1) = f 
(1) = 1). The function f (x) = x + 1 from N to N is injective. 


•

≠ ≠

• B• A



 Bĳections  

•  A function that is both surjective and injective is called a 
one-to-one correspondence, bijective, or a bijection. 
Any bijection f has an inverse function f−1; this is the 
function {(y,x) | (x,y) ∈ f}. Of the functions we have been 
using as examples, only f (x) = x + 1 from Z to Z is 
bijective. 


•

• B• A



 Bĳections and counting  

•  Bijections let us define the size of arbitrary sets without 
having some special means to count elements. We say 
two sets A and B have the same size or cardinality if 
there exists a bijection f : A ↔ B. 


•



•  Often it is convenient to have standard representatives of 
sets of a given cardinality. A common trick is to use the 
von Neumann ordinals, which are sets that are 
constructed recursively so that each contains all the 
smaller ordinals as elements. 


•



•  The empty set ∅ represents 0, the set {0} represents 1, {0, 1} represents 2, and so on. 
The first infinite ordinal is ω = {0, 1, 2, . . .}, which is followed by ω + 1 = {0, 1, 2, . . . ; ω}, 
ω + 2 = {0, 1, 2, . . . ; ω, ω + 1}, and so forth; there are also much bigger ordinals like ω2 

(which looks like ω many copies of ω stuck together), ωω
 (which is harder to describe, but 

can be visualized as the set of infinite sequences of natural numbers with an appropriate 
ordering), and so on. 


• Given any collection of ordinals, it has a smallest element, equal to the intersection of all 
elements: this means that von Neumann ordinals are well-ordered (see §9.5.6). So we 
can define the cardinality |A| of a set A formally as the unique smallest ordinal B such that 
there exists a bijection f : A ↔ B. 


•  http://planetmath.org/vonneumannordinal


•   https://www.quora.com/How-will-you-define-numbers-in-a-formal-way


•

http://planetmath.org/vonneumannordinal
https://www.quora.com/How-will-you-define-numbers-in-a-formal-way
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