Chapter 3

Set Theory

e Set theory is the dominant foundation for mathematics.

e The idea is that everything else in mathematics —
numbers, functions, etc.—can be written in terms of sets,
so that if you have a consistent description of how sets
behave, then you have a consistent description of how
everything built on top of them behaves.

e |f predicate logic is the machine code of mathematics, set
theory would be assembly language.

* The nice thing about set theory is that it requires only one
additional predicate on top of the standard machinery of
predicate logic.

e This is the membership or element predicate €, where x €

S means that x is an element of S. Here S is a set—a
collection of elements—and the identify of S is completely
determined by which x satisfy x € S.

 Every other predicate in set theory can be defined in terms
of e.

Naive set theory

 Naive set theory is the informal version of set theory that
corresponds to our intuitions about sets as unordered
collections of objects (called elements) with no duplicates.

* An element of a set may also be a set (in which case it
contains its own elements), or it may just be some object
that is not a set (also known as an urelement, which is

German for “primitive element”)

e {} =the empty set @, which has no elements.

e {Moe, Curly, Larry} = the Three Stooges.

e {0,1,2,...} =N, the natural numbers. Note that we are relying on
the reader guessing correctly how to continue the sequence here.

® {{},{0},{1},{0,1},{0,1,2},7} = a set of sets of natural numbers, plus
a stray natural number that i1s directly an element of the outer set.

Membership

e Membership in a set is written using the € symbol
(pronounced “is an element of,” “is a member of,” or just “is
In”). So we can write Moe € the Three Stooges or 4 € N. We

can also write € for “is not an element of,” as in Moe € N, and
the reversed symbol > for “has as an element,” asin N > 4.

* A fundamental axiom in set theory (the Axiom of
Extensionality; see §3.4) is that the only distinguishing
property of a set is its list of members: if two sets have the
same members, they are the same set.

For nested sets like {{1}}, € represents only direct membership:
the set {{1}} only has one element, {1}, so 1 & {{1}}.

This can be confusing if you think of € as representing the
English “is in,” because if | put my lunch in my lunchbox and put
my lunchbox in my backpack, then my lunch is in my backpack.

But my lunch is not an element of {{my lunch} , my textbook, my
slingshot}.

In general, € is not transitive

(see §9.3): it doesn’t behave like < unless there is something
very unusual about the set you are applying it to.

set comprehension

e A rule for how to generate all of its elements

e set-builder notation

o IX|xeNAXx>1A(vyeN:vzeN:yz=x—y=1vz=1)}=the prime
numbers.

e {2x|x&EN }=the even numbers.

o {xIx&ENAx<12}={0,1,2,34,5,6,7,89,10,11}.

{z|0<2<100, x=1 (mod 2) }
begindisplaymath 2ex| [x | x <= [0..100], x ‘mod‘ 2 == 1]
begindisplaymath 2ex| [x for x in range(0,101) if x % 2 == 1]

Table 3.1: Set comprehension vs list comprehension. The first line gives the
set of odd numbers between 0 and 100 written using set-builder notation.
The other lines construct the odd numbers between 0 and 100 as ordered list
data structures in Haskell and Python respectively.

e Some very high-level programming languages like
Haskell or Python have a similar mechanism called list
comprehension which does pretty much the same thing
except the result is an ordered list.

e {neN|ax,y,zeN\{0}:x"+y"=z"}. This is a fancy name for {1,
2}, but this fact is not obvious |].

Operations on sets

AUB={x |z € Avax e B} The union of A and B.
ANB={x |z € ANx € B}. The intersection of A and B.

—

A\B={x|x€ ANz & B}. The set difference of A and B.

AAB ={x |z € A& x € B}. The symmetric difference of A and
B.

Corresponding to implication is the notion of a subset:
* ACB (“Ais a subset of B”) if and only if vx:xeA—xeB.

e A 2B means that A is a superset of B, which is the same
as saying B € A.

* We can also write A ¢ B to say that A is a not a subset of
B, and the rather awkward-looking A ¢ B to say that A is

a proper subset of B, meaning that A ¢ B but A#B. (The
standard version A C B allows the case A = B.)

e Usually we will try to reserve “is Iin” for € and “is
contained in” for C, but it’s safest to use the symbols (or

“Iis an element/subset of”) to avoid any possibility of
ambiguity.

e Sometimes one says A is contained in B if A € B.

* This is one of two senses in which A can be “in” B—1it is
also possible that A is in fact an element of B (A € B).

e For example, the set A = {12} is an element of the set B =

{Moe, Larry, Curly, {12}}, but A is not a subset of B,
because A’s element 12 is not an element of B.

complement

A ={x| x¢A}. The set A is known as the complement of A.

e |f we allow complements, we are necessarily working
inside some fixed universe, since the complement U = ()
of the empty set contains all possible objects

The set theory used in most of mathematics is defined by a
collection of axioms that allow us to construct, essentially
from scratch, a universe big enough to hold all of
mathematics without apparent contradictions while avoiding
the paradoxes that may arise in naive set theory.

However, one conseguence of this construction is that the
universe (a) much bigger than anything we might ever use,
and (b) not a set, making complements not very useful. The
usual solution to this is to replace complements with explicit
set differences: U \ A for some specific universe U instead of

A

Proving things about sets

e Given x and S, show x € S. This requires looking at the

definition of S to see if x satisfies its requirements, and
the exact structure of the proof will depend on what the
definition of S is.

Given Sand T, show S ¢ T . Expanding the definition of

subset, this means we have to show that every x in S is
also in T. So a typical proof will pick an arbitrary x in S
and show that it must also be an element of T . This will
involve unpacking the definition of S and using its
properties to show that x satisfies the definition of T.

Given S and T, show S = T. Typically we do this by
showing S ¢ Tand T ¢ S separately. The first shows that

vX:XeS = xeT, the second showsthat vx: xe T — x
€ S. Together,xe S @ xeTandxeT = xeSgives X €
S < X € T, which is what we need for equality.

corresponding negative
statements

e Forx ¢S, use the definition of S as before.

e ForS £ T, we only need a counterexample: pick any one
element of S and show that it’s not an element of T .

Lemma 3.3.1. The following statements hold for all sets S and T'. and all
predicates P:

SOSNT (3.3.1)
SCSuUT (3.3.2)
S2{xeS|Px)} (3.3.3)
S=(SNT)U(S\T) (3.3.4)

Proof. e (3.3.1) Let & be in SNT. Then x € S and = € T, [rom the
definition of S N7". It follows that € §. Since x was arbitrary, we
have that lor all x in ST, x is also in T'; in other words, SNT C T.

e (3.32). Let x bein S. Then x € SV a2 €T is true, giving x € SUT.

e (3.33) Let x be in {x € S| P(x)}. Then, by the definition of set
comprehension, » € S and P(x). We don’t care about P(z), so we
drop it to just gct x € S.

e (3.3.4). This is a little messy, but we can solve it by breaking it down
into smaller problems.

First, we show that S C (S\7T)U (SNT). Let & be an clement of S.
There are two cases:

1. fxc T, then zc (SNT).

2. f x 1, then x € (§\ 1.
In cither case, we have shown that @ is in (SNT) U (S\ T). This gives
SCSNT)YU(S\T).
Converscely, we show that (S\T)U(SNT) C S. Supposc that = €
(S\T)uU(SNT). Again we have two cascs:

1. fze (S\T), thenxz e Sand x ¢ 1.

2. faxe (SNT), thenx € Sand x € T.

In either case, r € S.

Since we've shown that both the left-hand and right-hand sides of
(3.3.4) are subsets of each other, they must be equal.

Axiomatic set theory

e The axioms most commonly used are known as
Zermelo-Fraenkel set theory with choice or ZFC.

* The short version is that you can construct sets by (a)
listing their members, (b) taking the union of other sets, (c)
taking the set of all subsets of a set, or (d) using some
predicate to pick out elements or subsets of some set.

These properties follow from the more useful axioms of ZFC:

 Extensionality Any two sets with the same elements are
equal.:

e EXxistence The empty set @ is a set.:
 Pairing Given sets x and vy, {X, y} is a set.:

 Union For any set of sets S={x,y,z,...}, the set U S=xuyuzu...
exists.:

e Power set For any set S, the power set P(S) ={A | A ¢ S}
exists.:

Specification For any set S and any predicate P, the set {x € S | P(z)}
exists.” This is called restricted comprehension, and is an axiom
schema instead of an axiom, since it generates an infinite list of axioms,
one for each possible P. Limiting ourselves to constructing subsets
of existing sets avoids Russell’'s Paradox, because we can't construct
S ={x|x & x}. Instead, we can try to construct S ={xr €T | x € x},
but we’ll find that S isn’t an element of 7', so it doesn’t contain itself

but also doesn’t create a contradiction.

T

=

s B—UTRHE-

HI 5B -

o EIEZMARFIEME

A%

MELTIEZEAR

= O

-
A’ /A\NHE

CIEZEEMER ¢ AT
m:NFEEES P by

EeT= =3~
L JELE\Z'{

=
=

?

HeAEECEE

o ZMRBEEEC

Russell paradox

e https://www.scientificamerican.com/article/what-is-
russells-paradox/

e A confusing terminology, “not in”

e x ={a:ais notin a} leads to a contradiction in the same
way as the description of the collection of barbers.
Is x itself in the set x? Either answer leads to a

contradiction.

Infinity There is a set that has () as a member and also has z U {x}
whenever it has 2. This gives an encoding of N where () represents
0 and x U {2} represents o + 1. Expanding out the x + 1 rule shows
that each number is represented by the set of all smaller numbers, e.g.
3 =1{0.1,2} = {0,{0},{0.{0}}}, which has the nice property that
cach number n is represented by a set with exactly n elements, and
that @ < b can be represented by a € b.”

Without this axiom, we only get finite sets.

Cartesian products, relations,
and functions

e Sets are unordered: the set {a, b} is the same as the set
{b, a}. Sometimes it is useful to consider ordered pairs
(a, b), where we can tell which element comes first and
which comes second. These can be encoded as sets
using the rule (a, b) = {{a} , {a, b}}

* (@iven sets A and B, their Cartesian product AxB is the set
{(x,y)| x e Ay e B}, orin other words the set of all ordered

pairs that can be constructed
by taking the first element from A and the second from B. If

A has n
elements and B has m, then A x B has nm elements.For

example,
1,2} x{3,4} ={({1, 3), (1, 4), (2, 3), (2, 4)}.

e AxB#BxA

e The existence of the Cartesian product of any two sets
can be proved using the axioms we already have: if (X, V)
is defined as {{x}, {X, y}}, then P(A u B) contains all the

necessary sets {x} and {x, y} , and P (P (A u B)) contains
all the pairs {{x} , {X, y}}.

functions

A special class of relations are functions. A function from
a domain A to a codomain:B is a relation on A and B
(i.e., a subset of AxB such that every element of A
appears on the left-hand side of exactly one ordered parr.

* We write f:A—B as a short way of saying that f is a
function from A to B, and for each x € A write f(x) for the

unique y € B with (x,y) € f.

®* The set of all functions from A to B is written as BA: note
that the order of A and B is backwards here from A — B.
Since this is just the subset of P(A x B), consisting of

functions as opposed to more general relations, it exists
by the Power Set and Specification axioms.

=8

e (ften, a function is specified not by writing out some
huge set of ordered pairs, but by giving a rule for

computing f(x). An example: f(x) = x°. Particular trivial
functions can be defined in this way anonymously;

another way to write f(x) = x%is as the anonymous function
2
X — X,

* f(x) = x°. Note: this single rule gives several different
functions,e.g. f.:R—> R, f: Z2>Z,f:N—=>N,f:Z— N.
Changing the domain or codomain changes the function.

e f(x)=x+1.

* Floor and ceiling functions: when x is a real number, the floor of

X (usually written | x |) 1s the largest integer less than or equal to x

and the ceiling of x (usually written [x 1) is the smallest integer

greater

thanorequaltox.E.g., |2 =121=2,12.337=2,12.337]

 The function from {0, 1, 2, 3, 4} to {a, b, c} given by the
following table:

0 a
1 cC
2 b
3 a

4 b

Sequences

 Functions let us define sequences of arbitrary length: for
example, the infinite sequence Xo, X1, X2, . . . Of elements

of some set A is represented by a function x : N = A.

* A shorter sequence (ap, a1, a2) would be represented by a
functiona: {0, 1, 2} — A.

* The subscript takes the place of a function argument: we
treat x, as syntactic sugar for x(n).

* Finite sequences are often called tuples.

* We think of the result of taking the Cartesian product of a
finite number of sets A x B x C as a set of tuples (a, b, c),
even though the actual structure may be ((a, b), c) or (a,
(b, ¢)) depending on which product operation we do first.

e We can think of the Cartesian product of k sets (where k need not be 2) as
a set of sequences indexed by the set {1 ... k} (or sometimes {0 ...k - 1}).

e A x B x C, the set of functions from {1, 2, 3} to AuBuC with the property that
for each function f e AxBxC, f(1) € A, f(2) € B, and f(3) € C)

e Technically this means that A x B x C is not the same as (AxB)xC or A x (B
x C).

e (AxB)xC, the set of all ordered pairs whose first element is an ordered
pair in A x B and whose second element is in C

e A x (B x C), the set of ordered pairs whose first element is in A and
whose second element is in B x C.

Cartesian products over indexed collections of sets can be written using
product notation (see §6.2), as in

Functions of more (or less)
than one argument

If f: Ax B — C, then we write f(a,b) for f((a,b)). In general
we can have a function with any number of arguments
(including 0); a function of k arguments is just a function

from a domain of the form A¢ xA> x...Axto some codomain
B.

Composition of functions

e Two functionsf: A—= Bandg:B — C can be
composed to give a composition g o f.

 This is a function from A to C defined by (g o f)(x) = g(f(x)).
Composition is often implicit in definitions of functions:

the function x - x*+ 1 is the composition of two functions
X 5> X+ 1and x - X°.

Functions with special
properties

We can classify functions f : A = B based on how many
elements x of the domain A get mapped to each element
y of the codomain B.

If every vy is the image of at least one x, f is surjective.
If every y is the image of at most one x, f is injective.

If every y is the image of exactly one X, f is bijective.

Surjections

A function f: A = B that covers every element of B is

called onto, surjective, or a surjection. This means that
for any y in B, there exists some x in A such that y = f(x).
An equivalent way to show that a function is surjective is

to show that its range {f(x) | x € A} is equal to its
codomain.

* For example, the function f(x) = x* from N to N is not
surjective, because its range includes only perfect
squares. The function f(x) = x + 1 from N to N is not
surjective because its range doesn’t include 0. However,
the function f (x) = x + 1 from Z to Z is surjective, because
for every y in Z there is some x in Zsuch thaty = x + 1.

Injections

If f: A = B maps distinct elements of A to distinct
elements of B (i.e., if X #y implies f(x) #1(y)), it is called
one-to-one, injective, or an injection.

By contraposition, an equivalent definition is that f(x) = f(y)
implies x =y for all x and y in the domain. For example,

the function f(x) = x*from N to N is injective. The function
f(x) = x2 from Z to Z is not injective (for example, f (1) = f
(1) = 1). The function f (x) = x + 1 from N to N is injective.

Bijections

A function that is both surjective and injective is called a
one-to-one correspondence, bijective, or a bijection.

Any bijection f has an inverse function f_1; this is the
function {(y,x) | (x,y) € f}. Of the functions we have been

using as examples,only f(x) =x+ 1fromZtoZis
bijective.

Bijections and counting

e Bijections let us define the size of arbitrary sets without
having some special means to count elements. We say
two sets A and B have the same size or cardinality if
there exists a bijection f: A « B.

e Often it is convenient to have standard representatives of
sets of a given cardinality. A common trick is to use the
von Neumann ordinals, which are sets that are
constructed recursively so that each contains all the
smaller ordinals as elements.

The empty set @ represents 0, the set {0} represents 1, {0, 1} represents 2, and so on.
The first infinite ordinal is w = {0, 1, 2, . . .}, which is followed by w + 1 ={0, 1, 2, . . . ; w},
w+2={0,1,2,...;w, w+ 1}, and so forth; there are also much bigger ordinals like w®

(which looks like w many copies of w stuck together), w" (which is harder to describe, but
can be visualized as the set of infinite sequences of natural numbers with an appropriate
ordering), and so on.

Given any collection of ordinals, it has a smallest element, equal to the intersection of all

elements: this means that von Neumann ordinals are well-ordered (see §9.5.6). So we
can define the cardinality |A| of a set A formally as the unique smallest ordinal B such that
there exists a bijection f: A « B.

http://planetmath.org/vonneumannordinal

https://www.quora.com/How-will-you-define-numbers-in-a-formal-way

http://planetmath.org/vonneumannordinal
https://www.quora.com/How-will-you-define-numbers-in-a-formal-way

Integers The integers are the set Z = {...,—-2,—-1,0,—1,2,...}. We rep-
resent each integer z as an ordered pair (z,y), where x = 0V y = 0;
formally, Z = {(z,y) e Nx N |2z =0Vy =0}. The interpretation of
(z,y) is * — y: so positive integers z are represented as (z,0) while
negative integers are represented as (0, —z). It's not hard to define
addition, subtraction. multiplication, etc./\using this representation.

Deterministic finite state machines A deterministic finite state ma-
chine is a tuple (2.0, qo, 0. Qaccept) Where ¥ is an alphabet (some
finite set), Q is a state space (another finite set), gy € @ is an initial
state, 0 : () x ¥ — () is a transition function specifying which state
to move to when processing some symbol in 2, and Quceept © @ 18
the set ol accepting states. Il we represent symbols and states as
natural numbers, the set of all deterministic finite state machines is
then just a subset of P(N) x P(N) x N x (NNXN) x P(N) satisfying

some consistency constraints.

AUB

o Ny+Np 0. In other words, it is possible to have two sets A and B that
both hgfe the same size as N, take their disjoint union, and get another
sct A | B that has the same size as N. To give a specific example,
let A= {2z |z € N} (the even numbers) and B = {2z +1 | x € N}
(the odd numbers). These have |A| = |B| = |N| because there is a
bijection between cach of them and N built directly into their definitions.
It’s also not hard to sce that A and B arc disjoint, and that AUB = N,
So |A| = |B| = |A| + |B| in this casc.

A\

|AUB|

Ng - Ng = Ng. Example: A bijection between N x N and N using the
Cantor pairing function (z,y) = (z+y+1)(x+y)/2-+y. The first few
values of this are (0,0) =0,(1,0) =2-1/24+0=1,(0,1) =2-1/24+1 =
2,(2,0)=3-2/24+0=3,(1,1) =3-2/2+1=41,(0,2) =3-2/2+4+2 = 5,
elc. The basic idea is to order all the pairs by increasing « + vy, and then
order pairs with the same value of = + y by increasing y. Eventually
cvery pair is rcached.

N* = {all finite sequences of elements of N} has size Ry. One way
to do this to define a function recursively by setting f([]) = 0 and
f([first, rest]|) = 1 + (first, f(rest)), where first is the first element of

the sequence and rest is all the other elements. For example,

£(0,1,2) =1+ (0, f(1,2))
=1+ (0,1+(1,f(2)))
— 1+ (0,1 + (1,1 + (2,0
=14+ (0,1+ (1,1+3) =1+ (0,1+ (1,4))
=1+ (0,1 + 19)
— 1+ (0,20)
— 1+ 230
— 231.

Countable sets

The sets N, N2 and N* all have the property of being countable, which
means that they can be put into a bijection with N or one of its subsets.
Countability of N* mcans that anything you can write down using finitely
many symbols (cven if they are drawn from an infinite but countable alphabet)
is countable. This has a lot of applications in computer scicnce: onc of them
is that the set of all computer programs in any particular programming
language is countable.

