
Lecture 5: Graphs



•  A graph is a structure in which pairs of vertices are 
connected by edges. 


• Each edge may act like an ordered pair (in a directed 
graph) or an unordered pair (in an undirected graph). 
We’ve already seen directed graphs as a representation 
for relations. Most work in graph theory concentrates 
instead on undirected graphs. 


•



•  In particular, unless otherwise specified, a graph will refer 
to a finite simple undirected graph: 


• an undirected graph with a finite number of vertices, 
where each edge connects two distinct vertices (thus 
no self-loops) and there is at most one edge between 
each pair of vertices (no parallel edges). 


•



 Types of graphs  

•   Graphs are represented as ordered pairs G = (V,E), 
where V is a set of vertices and E a set of edges. 


• The differences between different types of graphs 
depends on what can go in E. When not otherwise 
specified, we usually think of a graph as an undirected 
graph (see below), but there are other variants. 


• Typically we assume that V and E are both finite. 


•



 Directed graphs  

•  In a directed graph or digraph, each element of E is an 
ordered pair, and we think of edges as arrows from a 
source, head, or initial vertex to a sink, tail, or terminal 
vertex; each of these two vertices is called an endpoint of 
the edge. 


• A directed graph is simple if there is at most one edge 
from one vertex to another. 


• A directed graph that has multiple edges from some vertex 
u to some other vertex v is called a directed multigraph 


•



•  For simple directed graphs, we can save a lot of ink by 
adopting the convention of writing an edge (u, v) from u to 
v as just uv. 


•



 Undirected graphs  

•  In an undirected graph, each edge is an undirected pair, which 
we can represent as subset of V with one or two elements. 


• A simple undirected graph contains no duplicate edges and 
no loops (an edge from some vertex u back to itself); this 
means we can represent all edges as two-element subsets of 
V . 


• Most of the time, when we say graph, we mean a simple 
undirected graph. Though it is possible to consider infinite 
graphs, for convenience we will limit ourselves to finite graphs, 
where n = |V | and m = |E| are both natural numbers. 


•



•  


• As with directed graphs, instead of writing an edge as 
{u,v}, we will write an edge between u and v as just uv. 
Note that in an undirected graph, uv and vu are the same 
edge. 



•  If we have loops or parallel edges, we have a more 
complicated structure called a multigraph. 


• This requires a different representation where elements of 
E are abstract edges and we have a function mapping 
each element of E to its endpoints. 


• Some authors make a distinction between pseudographs 
(with loops) and multigraphs (without loops), but we’ll use 
multigraph for both. 


•



•  Simple undirected graphs also correspond to relations, 
with the restriction that the relation must be irreflexive (no 
loops) and symmetric (undirected edges). 


• This also gives a representation of undirected graphs as 
directed graphs, where the edges of the directed graph 
always appear in pairs going in opposite directions. 


•



 Hypergraphs  

•  In a hypergraph, the edges (called hyperedges) are 
arbitrary nonempty sets of vertices. 


• A k-hypergraph is one in which all such hyperedges 
connected exactly k vertices; an ordinary graph is thus a 
2-hypergraph. 


•



 Hypergraphs  



•  Hypergraphs aren’t used very much, because it is always possible 
(though not always convenient) to represent a hypergraph by a 
bipartite graph. 


• In a bipartite graph, the vertex set can be partitioned into two 
subsets S and T , such that every edge connects a vertex in S with 
a vertex in T . 


• To represent a hypergraph H as a bipartite graph, we simply 
represent the vertices of H as vertices in S and the hyperedges of H 
as vertices in T , and put in an edge (s,t) whenever s is a member of 
the hyperedge t in H. The right-hand side of Figure 10.3 gives an 
example. 


•



 Examples of graphs  





•  The web graph is a directed multigraph with web pages 
for vertices and hyperlinks for edges. Though it changes 
constantly, its properties have been fanatically studied 
both by academic graph theorists and employees of 
search engine companies, many of which are still in 
business. 


• Companies like Google base their search rankings largely 
on structural properties of the web graph. 


•



Traveling Salesman Problem



 Local structure of graphs  

•  Incidence: a vertex is incident to any edge of which it is 
an endpoint (and vice versa).  


• Adjacency, neighborhood: two vertices are adjacent if 
they are the endpoints of some edge. The neighborhood 
of a vertex v is the set of all vertices that are adjacent to v.  

•  

關聯聯，接合



•  Degree, in-degree, out-degree: the degree of v counts the 
number edges incident to v. 


• In a directed graph, in-degree counts only incoming edges 
and out-degree counts only outgoing edges 


• (so that the degree is always the in-degree plus the out-
degree). 


• The degree of a vertex v is often abbreviated as d(v); in-degree 
and out-degree are similarly abbreviated as d−(v) and d+(v), 
respectively.  

•



 Some standard graphs  

•  Complete graph Kn. This has n vertices, and every pair 
of vertices has an edge between them. 


•





•  Cycle graph Cn. This has vertices {0,1,...n−1} and an 
edge from i to i+1 for each i, plus an edge from n−1 to 0. 
For any cycle, n must be at least 3. See Figure 10.5. 


•









•  Path Pn. This has vertices {0,1,2,...n} and an edge from i 
to i+1 for each i. Note that, despite the usual convention, 
n counts the number of edges rather than the number of 
vertices; we call the number of edges the length of the 
path. See Figure 10.6. 


•



•  Complete bipartite graph Km,n. This has a set A of m 
vertices and a set B of n vertices, with an edge between 
every vertex in A and every vertex in B, but no edges 
within A or B. See Figure 10.7. 


•



•  Star graphs. These have a single central vertex that is 
connected to n outer vertices, and are the same as K1,n. 
See Figure 10.8. 


•





•  The cube Qn. This is defined by letting the vertex set 
consist of all n-bit strings, and putting an edge between u 
and u′  if u and u′ differ in exactly one place. It can also be 
defined by taking the n-fold square product of an edge 
with itself (see §10.6). 


•



• Cayley graphs. The Cayley graph of a group G with a 
given set of generators S is a labeled directed graph. 


• The vertices of this graph are the group elements, and for 
each element g in G and generator s in S there is a 
directed edge from g to gs labeled with s. An example of 
a small Cayley graph, based on the dihedral group D4  of 
symmetries of the square, is given in Figure 10.9. 


•







 subgraph

•  A graph G is a subgraph of a graph H, written G⊆H, if VG 

⊆VH  and EG ⊆ EH. We will also sometimes say that G is a 
subgraph of H if it is isomorphic to a subgraph of H, 
which is equivalent to having an injective homomorphism 
from G to H.



•   One can get a subgraph by deleting edges or vertices or 
both. Note that deleting a vertex also requires deleting 
any edges incident to the vertex (since we can’t have an 
edge with a missing endpoint). If we delete as few edges 
as possible, we get an induced subgraph. Formally, the 
subgraph of a graph H whose vertex set is S and that 
contains every edge in H with endpoints in S is called the 
subgraph of H induced by S. 


•





•  A minor of a graph H is a graph obtained from H by 
deleting edges and/or vertices (as in a subgraph) and 
contracting edges, where two adjacent vertices u and v 
are merged together into a single vertex that is adjacent 
to all of the previous neighbors of both vertices. 


• Minors are useful for recognizing certain classes of 
graphs. For example, a graph can be drawn in the plane 
without any crossing edges if and only if it doesn’t contain 
K5 or K3,3  as a minor (this is known as Wagner’s theorem). 


•


