
 Graph II  





 Subgraphs and minors  



 Graph products  

•  There are at least five different definitions of the product 
of two graphs used by serious graph theorists. In each 
case the vertex set of the product is the Cartesian 
product of the vertex sets, but the different definitions 
throw in different sets of edges. 




 square product 

•  The square product or graph Cartesian product G     H 


•    An edge (u,u′)(v,v′) is in G    H if and only if (a) u=v and u′v′ 

is an edge in H, or (b) uv is an edge in G and v = v′. 


•  It’s called the square product because the product of two 
(undirected) edges looks like a square. 
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•  The intuition is that each vertex in G is replaced by a 
copy of H, and then corresponding vertices in the 
different copies of H are linked whenever the original 
vertices in G are adjacent. 
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•  

•  The cube Qn can be defined recursively by Q1 = P1   and     
Qn = Qn−1 �   Q1. It is also the case that Qn = Qk    Qn−k. 


• An n-by-m mesh is given by Pn−1 �     Pm−1. 




•  The cross product or categorical graph product G × H 


• Now (u,u′)(v,v′) is in G×H if and only if uv is in G and u′v′ 

is in H. 


• In the cross product, the product of two (again 
undirected) edges is a cross: an edge from (u, u′) to (v, 
v′) and one from (u, v′) to (v, u′). 
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•  if C1 and C2 are the Cayley graphs of G1 and G2 (for 
particular choices of generators), then C1 �    C2 is the 
Cayley graph of G1 × G2.



 Functions between graphs  

•  A function from a graph G to another graph H typically 
maps VG  to VH, with the edges coming along for the ride. 
For simplicity, we will generally write f : G → H when we 
really mean f : VG → VH 




•  A function f : G → H is a graph homomorphism if, for 
every edge uv in G, f(u)f(v) is an edge in H. 


• Note that this only goes one way: it is possible to have an 
edge f(u)f(v) in H but no edge uv in G. 


• Generally we will only be interested in functions between 
graphs that are homomorphisms, and even among 
homomorphisms, some functions are more interesting 
than others. 


同態 



•  A graph homomorphism that has an inverse that is also a 
graph homomorphism is called an graph isomorphism.


•  Two graphs G and H are isomorphic if there is an 
isomorphism between them. 


• Intuitively, this means that G and H are basically the same 
graph, with different names for the vertices, and we will 
often treat them as the same graph. 


同構 



•  for example, we will think of a graph G = (V,E) where V = 
{1,3,5} and E = {{1,3},{3,5},{1,5}} as an instance of C3  and 
K3  even if the vertex labels are not what we might have 
chosen by default. To avoid confusion with set equality, 
we write G ∼= H when G and H are isomorphic. 
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•  Every graph is isomorphic to itself, because the identity 
function is an isomorphism. But some graphs have 
additional isomorphisms. An isomorphism from G to G is 
called an automorphism of G and corresponds to an 
internal symmetry of G. 
 ⾃自同構



•  For example, the cycle Cn has 2n different automorphisms 
(to count them, observe there are n places we can send 
vertex 0 to, and having picked a place to send vertex 0 to, 
there are only 2 places to send vertex 1; so we have 
essentially n rotations times 2 for flipping or not flipping 
the graph). A path Pn (when n > 1) has 2 automorphisms 
(reverse the direction or not). 
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•  An injective homomorphism from G to H is an 
isormophism between G and some subgraph H′ of H. 


•  In this case, we often say that G is a subgraph of H, even 
though technically it is just a copy of G that appears as a 
subgraph of H. This allows us to say, for example, that Pn 

is a subgraph of Pn+1,1 or all graphs on at most n vertices 
are subgraphs of Kn. 




 Paths and connectivity  

•  A fundamental property of graphs is connectivity: 
whether the graph can be divided into two or more pieces 
with no edges between them. Often it makes sense to talk 
about this in terms of reachability, or whether you can get 
from one vertex to another along some path. 




•  The pedantic definition of a path path of length n in a 
graph is the image of a homomorphism from Pn. In 
ordinary speech, it’s a sequence of n+1 vertices v0,v1,...,vn 

such that vivi+1 is an edge in the graph for each i. 


• A path is simple if the same vertex never appears twice 
(i.e. if the homomorphism is injective). If there is a path 
from u to v, there is a simple path from u to v obtained by 
removing cycles 




a path : 4 2 5 3 2 1 
a simple path: 4 2 1 



•  If there is a path from u to v, then v is reachable from u: 
u       v. We also say that u is connected to v. 


• It’s easy to see that connectivity is reflexive (take a path of 
length 0) and transitive (paste a path from u to v together 
with a path from v to w to get a path from u to w). But it’s 
not necessarily symmetric if we have a directed graph. 




•  In an undirected graph, connectivity is symmetric, so it’s 
an equivalence relation. The equivalence classes of       
are called the connected components of G, and G itself 
is connected if and only if it has a single connected 
component, i.e., if every vertex is reachable from every 
other vertex. 


• (Note that isolated vertices count as (separate) connected 
components.) 






•  In a directed graph, we can make connectivity symmetric in one 
of two different ways: 


•  Define u to be strongly connected to v if u        v and v        u.   
I.e.,u and v are strongly connected if you can go from u to v and 
back again (not necessarily through the same vertices). 


• It’s easy to see that strong connectivity is an equivalence 
relation. The equivalence classes are called strongly-connected 
components. A graph G is strongly connected if it has one 
strongly-connected component, i.e., if every vertex is reachable 
from every other vertex. 




•  Define u to be weakly connected to v if u       v in the 
undirected graph obtained by ignoring edge orientation. 


• The intuition is that u is weakly connected to v if there is a 
path from u to v if you are allowed to cross edges backwards. 


• Weakly-connected components are defined by equivalence 
classes; a graph is weakly-connected if it has one component. 
Weak connectivity is a “weaker” property that strong 
connectivity in the sense that if u is strongly connected to v, 
then u is weakly connected to v; but the converse does not 
necessarily hold. 




•  



 Cycles  

•  The standard cycle graph Cn  has vertices {0, 1, . . . , n − 1} with an 
edge from i to i+1 for each i and from n−1 to 0. To avoid 
degeneracies, n must be at least 3. 


• A simple cycle of length n in a graph G is an embedding of Cn  in G: 
this means a sequence of distinct vertices v0v1v2 . . . vn−1, where each 
pair vivi+1 is an edge in G, as well as vn−1v0. 


• If we omit the requirement that the vertices are distinct, but insist on 
distinct edges instead, we have a cycle. If we omit both 
requirements, we get a closed walk; this includes very non-cyclic-
looking walks like the short excursion uvu. We will mostly worry about 
cycles.2 








•  A graph with no cycles is acyclic. Directed acyclic 
graphs or DAGs have the property that their reachability 
relation              is a partial order; this is easily proven by 
showing that if                is not anti-symmetric, then there 
is a cycle consisting of the paths between two non-anti-
symmetric vertices u          v and v         u. 




•  A partial order is a relation ≤ that is reflexive, transitive, 
and anti-symmetric. The last means that if x ≤ y and y ≤ x, 
then x = y.  


• A relation R is antisymmetric if the only way that both 
(a,b) and (b,a) can be in R is if a=b. 




•  Directed acyclic graphs may also be topologically 
sorted: their vertices ordered as v0,v1,...,vn−1, so that if 
there is an edge from vi to vj, then i < j.


•  The proof is by induction on |V|, with the induction step 
setting vn−1 to equal some vertex with out-degree 0 and 
ordering the remaining vertices recursively. (See §9.5.5.1.) 




 Trees

•  Connected acyclic undirected graphs are called trees. 


• A connected graph G = (V, E) is a tree if and only if             
|E| = |V | − 1; we’ll prove this and other characterizations 
of tree in §10.10.3. 




•  A cycle that includes every edge exactly once is called an 
Eulerian cycle or Eulerian tour, after Leonhard Euler, 
whose study of the Seven bridges of Königsberg problem 
led to the development of graph theory. 




•  A cycle that includes every vertex exactly once is called a 
Hamiltonian cycle or  Hamiltonian tour, after William 
Rowan Hamilton, another historical graph- theory 
heavyweight (although he is more famous for inventing 
quaternions and the Hamiltonian). 




•  Graphs with Eulerian cycles have a simple 
characterization: a graph has an Eulerian cycle if and only 
if every vertex has even degree. 


• Graphs with Hamiltonian cycles are harder to recognize. 



 Paths and simple paths  

•  Lemma 10.10.1. If there is a path from s to t in G, there is a simple path 
from s to t in G. 


•  Proof. By induction on the length of the path. Specifically, we will show 
that if there is a path from s to t of length k, there is a simple path from s 
to t. 


• The base case is when k = 1; then the path consists of exactly one 
edge and is simple. 


• For larger k, let s=v0...vk =t be a path in G. If this path is simple, we are 
done. Otherwise, there exist positions i < j such that vi = vj. Construct 
a new path v1 ...vivj+1 ...vk; this is an s–t path of length less than k, so 
by the induction hypothesis a simple s–t path exists. 
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•  Lemma 10.10.2. If there is a cycle in G, there is a simple 
cycle in G. 


•  Proof. As in the previous lemma, we prove that there 
exists a simple cycle if there is a cycle of length k for any 
k, by induction on k. 


• First observe that the smallest possible cycle has 
length 3, since anything shorter either doesn’t get back 
to its starting point or violates the no-duplicate edges 
requirement. 




• So the base case is k = 3, and it’s easy to see that all 3-
cycles are simple. 


• For larger k, if v0v1 . . . vk−1  is a k-cycle that is not 
simple, there exist i < j with vi = vj; patch the edges 
between them out to get a smaller cycle v0...vivj+1...vk−1. 
The induction hypothesis does the rest of the work. 




 The Handshaking Lemma  



G G′�
s t s t



•  A tree is defined to be an acyclic connected graph. 
There are several equivalent characterizations. 




•  Theorem 10.10.4. A graph is a tree if and only if there is 
exactly one simple path between any two distinct 
vertices. 


•  Proof. A graph G is connected if and only if there is at 
least one simple path between any two distinct vertices. 
We’ll show that it is acyclic if and only if there is at most 
one simple path between any two distinct vertices. 




• First, suppose that G has two distinct simple paths u = 
v1v2 . . . vk = v and u=v1′v2′ ...vl′ =v. Let i be the largest index 
for which vi =vi′;  under the assumption that the paths are 
distinct and simple, we have i < min(k, l). 


• Let j>i be the smallest index for which vj =vm′  for some 
m>i; we know that some such j exists because, if nothing 
else, vk = vl. Let m be the smallest such m . 
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•  Now construct a cycle vivi+1 …vj                                    . This is in 
fact a simple cycle, since the vr  are all distinct, the vs′  are 
all distinct, and if any vr   with i<r<j equals vs′ with i<s<m, 
then j or m is not minimal. It follows that if G has two 
distinct simple paths between the same vertices, it 
contains a simple cycle, and is not acyclic. 
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• Conversely, suppose that G is not acyclic, and let v1v2 . . . 
vk = v1  be a simple cycle in G. Then v1v2  and v2 . . . vk  are 
both simple paths between v1  and v2, one of which 
contains v3  and one of which doesn’t. So if G is not 
acyclic, it contains more than one simple path between 
some pair of vertices. 
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•  An alternative characterization counts the number of 
edges: we will show 


• that any graph with less than |V | − 1 edges is 
disconnected, and 


• any graph with more than |V | − 1 edges is cyclic. 


• With exactly |V | − 1 edges, we will show that a graph is 
connected if and only if it is acyclic. 




•  Lemma 10.10.5. Let G be a nonempty graph, and let v 
be a vertex of G with d(v) = 1. Let G − v be the induced 
subgraph of G obtained by deleting v and its unique 
incident edge. Then 


• 1. G is connected if and only if G − v is connected. 


• 2. G is acyclic if and only if G − v is acyclic. 




•  Proof. Let w be v’s unique neighbor. 
If G is connected, for any two vertices s and t, there is a 
simple s–t path.  If neither s nor t is v, this path can’t 
include v, because w would appear both before and after 
v in the path, violating simplicity. So for any s, t in G−v, 
there is an s–t path in G−v, and G−v is connected. 
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A simple path between s and t must not include v since v only connects to w in G



•  Conversely, if G − v is connected, then 


• any s and t not equal to v remain connected after adding 
vw, and 


• if s = v, for any t there is a path w = v1 ...vk = t, from which 
we can construct a path vv1 ...vk = t from v to t. 


• The case t = v is symmetric. 


• If G contains a cycle, then it contains a simple cycle; this 
cycle can’t include v, so G − v also contains the cycle. 
Conversely, if G − v contains a cycle, this cycle is also in G. 
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•  Corollary 10.10.6. Let G = (V, E). If |E| < |V | − 1, G is not connected.  

• Proof. By induction on n = |V |. 
For the base case, if n = 0, then |E| = 0         n − 1. 
For larger n, suppose that n ≥ 1 and |E| < n − 1. From Lemma 
10.10.3 we have �                     d(v) < 2n − 2, from which it follows that there 
must be at least one vertex v with d(v) < 2. 


• If d(v) = 0, then G is not connected. If d(v) = 1, then G is connected 
if and only if G−v is connected. But G−v has n−1 vertices and |E| − 
1 < n − 2 edges, so by the induction hypothesis, G − v is not 
connected. 


• So in either case, |E| < n − 1 implies G is not connected. 




• In the other direction, combining the lemma with the fact 
that the unique graph K3  with three vertices and at least 
three edges is cyclic tells us that any graph with at least 
as many edges as vertices is cyclic. 




•  Corollary 10.10.7. Let G = (V, E). If |E| > |V | − 1, G contains a 
cycle.  

• Proof. By induction on n = |V |. 
For n ≤ 2, |E| ≯ |V − 1|, so the claim holds vacuously.3 For larger 
n, there are two cases: 


• 1. Some vertex v has degree d(v) ≤ 1. Let G′ = (V′, E′) = G − v. 
Then |E′| ≥ |E|−1 > |V|−2 = |V′|−1, and by the induction 
hypothesis G′ contains a cycle. This cycle is also in G. 


• 2. Every vertex v in G has d(v) ≥ 2. Let’s go for a walk: starting 
at some vertex v0, choose at each step a vertex vi+1 adjacent to 
vi that 




•  does not already appear in the walk. This process 
finishes when we reach a node vk all of whose neighbors 
appear in the walk in a previous position. One of these 
neighbors may be vk−1; but since d(vk) ≥ 2, there is another 
neighbor vj             vk−1. So vj . . . vkvj forms a cycle. 




•  Theorem 10.10.8. Let G = (V, E) be a nonempty graph. 
Then any two of  the following statements implies the 
third: 


• 1. G is connected. 
2. G is acyclic. 
3. |E|=|V|−1. 




•  Proof. We will use induction on n for some parts of the proof. The 
base case is when n = 1; then all three statements hold always. For 
larger n, we show: 


• (1) and (2) imply (3): Use Corollary 10.10.6 and Corollary 10.10.7.  

• (1) and (3) imply (2). From Lemma 10.10.3,      �v∈V d(v) = 2(n−1) < 2n. 
It follows that there is at least one v with d(v) ≤ 1. Because G is 
connected, we must have d(v) = 1. So G′ = G−v is a graph with n−2 
edges and n − 1 vertices. It is connected by Lemma 10.10.5, and 
thus it is acyclic by the induction hypothesis. Applying the other case 
of Lemma 10.10.5 in the other direction shows G is also acyclic.  



•  

• (1) and (3) imply (2). From Lemma 10.10.3,      �v∈V d(v) = 
2(n−1) < 2n. It follows that there is at least one v with d(v) 
≤ 1. Because G is connected, we must have d(v) = 1. So 
G′ = G−v is a graph with n−2 edges and n − 1 vertices. It is 
connected by Lemma 10.10.5, and thus it is acyclic by 
the induction hypothesis. Applying the other case of 
Lemma 10.10.5 in the other direction shows G is also 
acyclic.  



•  (2) and (3) imply (1). As in the previous case, G contains a 
vertex v with d(v) ≤ 1. If d(v) = 1, then G−v is a nonempty 
graph with n − 2 edges and n − 1 vertices that is acyclic 
by Lemma 10.10.5. It is thus connected by the induction 
hypothesis, so G is also connected by Lemma10.10.5. If 
d(v)=0, then G−v has n−1 edges and n−1 vertices. From 
Corollary 10.10.7, G − v contains a cycle, contradicting  
(2).  

G-v satisfies conditions 
(2) and (3). By induction  

hypothesis, G-v is 
connected 


