
 count I

 Spanning trees

• A spanning tree of a nonempty connected graph G is a
subgraph of G that includes all vertices and is a tree

•

• Theorem 10.10.9. Every nonempty connected graph has
a spanning tree.

• Proof. Let G = (V,E) be a nonempty connected graph.

• We’ll show by induction on |E| that G has a spanning tree.
The base case is |E| = |V | − 1 (the least value for which G
can be connected); then G itself is a tree (by the theorem
above).

• For larger |E|, the same theorem gives that G contains a
cycle.

• Let uv be any edge on the cycle, and consider the graph
G − uv; this graph is connected (since we can route any
path that used to go through uv around the other edges
of the cycle) and has fewer edges than G, so by the
induction hypothesis there is some spanning tree T of G −
uv. But then T also spans G, so we are done.

•

 Eulerian cycles

• Theorem 10.10.10. Let G be a connected graph. Then G
has an Eulerian cycle if and only if all nodes have even
degree.

•

• (Only if part). Fix some cycle, and orient the edges by
the direction that the cycle traverses them. Then in the
resulting directed graph we must have d−(u) = d+(u) for all
u, since every time we enter a vertex we have to leave it
again.

• But then d(u) = 2d+(u) is even.

•

• Suppose now that d(u) is even for all u. We will construct
an Eulerian cycle on all nodes by induction on |E|. The
base case is when |E| = 2|V | and G = C|V |.

•

• For a larger graph, choose some starting node u1, and
construct a path u1u2 . . . by choosing an arbitrary unused
edge leaving each ui; this is always possible for ui u1

since whenever we reach ui we have always consumed an
even number of edges on previous visits plus one to get
to it this time, leaving at least one remaining edge to leave
on.

• Since there are only finitely many edges and we can only
use each one once, eventually we must get stuck, and
this must occur with uk = u1 for some k.

•

≠

1

2 3

4

5 6

path : 1 5 6 1

path : 1 2 5 3 1

• Now delete all the edges in u1 . . . uk from G, and consider
the connected components of G − (u1 . . . uk). Removing the
cycle reduces d(v) by an even number, so within each such
connected component the degree of all vertices is even. It
follows from the induction hypothesis that each connected
component has an Eulerian cycle.

• We’ll now string these per-component cycles together using
our original cycle: while traversing u1 . . . , uk when we
encounter some component for the first time, we take a
detour around the component’s cycle. The resulting merged
cycle gives an Eulerian cycle for the entire graph.

•

• Why doesn’t this work for Hamiltonian cycles? The
problem is that in a Hamiltonian cycle we have too many
choices: out of the d(u) edges incident to u, we will only
use two of them. If we pick the wrong two early on, this
may prevent us from ever fitting u into a Hamiltonian
cycle. So we would need some stronger property of our
graph to get Hamiltonicity.

•

 Counting

• Counting is the process of creating a bijection between a
set we want to count and some set whose size we
already know. Typically this second set will be a finite
ordinal [n] = {0, 1, . . . , n − 1}.

• Counting a set A using a bijection f : A → [n] gives its size
|A| = n; this size is called the cardinality of n.

•

• As a side effect, it also gives a well-ordering of A, since
[n] is well-ordered as we can define x ≤ y for x, y in A by
x≤y if and only if f(x)≤f(y).

• Often the quickest way to find f is to line up all the
elements of A in a well-ordering and then count them off:
the smallest element of A gets mapped to 0, the next
smallest to 1, and so on.

•

 enumerative combinatorics

• standard counting principles based on how we
constructed the set

• The branch of mathematics that studies sets constructed
by combining other sets is called combinatorics

• the sub-branch that counts these sets is called
enumerative combinatorics

•

• For infinite sets, cardinality is a little more complicated.
The basic idea is that we define |A| = |B| if there is a
bijection between them.

• This gives an equivalence relation on sets2, and we define
|A| to be the equivalence class of this equivalence relation
that contains A.

•

 Basic counting techniques

• the number of subsets of a set of size n,

• the number of ways to put k cats into n boxes so that no
box gets more than one cat

• thesetSn =︎x∈N︎
︎x<n2∧∃y:x=y2︎hasexactlyn members, because

we can generate it by applying the one-to-one correspon-
dencef(y)=y2 totheset{0,1,2,3,...,n−1}=[n]

•

• Constructing an explicit one-to-one correspondence is
too time-consuming or too hard, so instead we will show
how to

• map set-theoretic operations to arithmetic operations, so
that from a set-theoretic construction of a set we can
often directly read off an arithmetic computation that
gives the size of the set.

•

• Equality: reducing to a previously-solved case

•

• Inequalities: showing |A| ≤ |B| and |B| ≤ |A|

• We write |A| ≤ |B| if there is an injection f : A → B, and
similarly |B| ≤ |A| if there is an injection g : B → A. If both
conditions hold, then there is a bijection between A and
B, showing |A| = |B|. This fact is trivial for finite sets, but
for infinite sets—even though it is still true—the actual
construction of the bijection is a little trickier.3

•

• Similarly, if we write |A| ≥ |B| to indicate that there is a
surjection from A to B, then |A| ≥ |B| and |B| ≥ |A| implies |
A| = |B|. The easiest way to show this is to observe that if
there is a surjection f : A → B, then we can get an
injection f′ : B → A by letting f′(y) be any element of {x | f(x)
= y}, thus reducing to the previous case

• Showing an injection f : A → B and a surjection g : A → B
also works.

•

• For example, |Q| = |N|.

• Proof: |N| ≤ |Q| because we can map any n in N to the same
value in Q; this is clearly an injection.

• To show |Q| ≤ |N|, observe that we can encode any element
±p/q of Q, where p and q are both natural numbers, as a
triple (s, p, q) where (s ∈ {0, 1} indicates + (0) or − (1); this
encoding is clearly injective.

• Then use the Cantor pairing function (§3.7.1) twice to crunch
this triple down to a single natural number, getting an
injection from Q to N.

•

 Addition: the sum rule

• The sum rule computes the size of A ∪ B when A and B are
disjoint. Theorem 11.1.1. If A and B are finite sets with A ∩ B =
∅, then |A ∪ B| = |A| + |B|.

Proof. Let f : A → [|A|] and g : B → [|B|] be bijections.
Define h : A∪B → [|A| + |B|] by the rule h(x) = f(x) for x ∈ A, h(x) = |
A| + g(x) for x ∈ B.
To show that this is a bijection, define

h−1(y) for y in [|A| + |B|] to be f−1(y) if y < |A| and g−1(y − |A|) otherwise.

•

A

A B

[1 2 3 4 . . . |A|]

f

[1 2 3 4 . . . |B|]

g

A

A B

[1 2 3 4 . . . |A|]

h=f

[|A| +1 |A| +2 |A| +3 . . . |A|+ |B|]

h=|A|+g

h-1 = ?

Then for any y in [|A| + |B|], either

• 0 ≤ y < |A|, y is in the codomain of f

• h−1(y) = f−1(y) ∈ A is well-defined, and h(h−1(y)) = f(f−1(y)) = y.  

• |A| ≤ y < |A|+|B|. In this case 0 ≤ y−|A| < |B|, putting y−|A| in
the codomain of g and giving h(h−1(y)) = g(g−1(y − |A|)) + |A| =
y.  

So h−1 is in fact an inverse of h, meaning that h is a bijection.

•

•

 For infinite sets

• he sum rule works for infinite sets, too; technically, the
sum rule is used to define |A| + |B| as |A ∪ B| when A and
B are disjoint. This makes cardinal arithmetic a bit wonky:
if at least one of A and B is infinite, then |A| + |B| = max(|
A|, |B|), since we can space out the elements of the larger
of A and B and shove the elements of the other into the
gaps.

•

 The Pigeonhole Principle

• A consequence of the sum rule is that if A and B are both
finite and |A| > |B|, you can’t have an injection from A to B.

• The proof is by contraposition. prove p q by verifying
~q ~p

•

→
→

• Suppose f : A → B is an injection.

• Write A as the union of f−1(x) for each x ∈ B, where f−1(x) is
the set of y in A that map to x. Because each f−1(x) is
disjoint, the sum rule applies; but because f is an injection
there is at most one element in each f−1(x).

•

• It follows that |A| = ︎
x∈B

︎
︎f−1(x)︎

︎ ≤ ︎
x∈B 1 = |B|.∑ ∑

•

• If we have n boxes and we place more than n objects into them, then there
will be at least one box that contains more than one object.

 Subtraction

• For any sets A and B, A is the disjoint union of A∩B and
A\B.

• So |A| = |A ∩ B| + |A \ B| (for finite sets) by the sum rule.

• Rearranging gives |A \ B| = |A| − |A ∩ B|. (11.1.1)

•

This is a special case of the inclusion-exclusion formula, which
can be used to compute the size of the union of many sets using the
size of pairwise, triple-wise, etc. intersections of the sets.
•

 Inclusion-exclusion for
infinite sets

• Subtraction doesn’t work very well for infinite quantities
(while that doesn’t mean = 0).

•

• So the closest we can get to the inclusion- exclusion
formula is that |A|+|B|=|A∪B|+|A∩B|.

• If at least one of A or B is infinite, then |A ∪ B| is also
infinite, and since |A ∩ B| ≤ |A ∪ B| we have |A ∪ B| + |A ∩
B| = |A ∪ B| by the bizarre rules of cardinal arithmetic.

• So for infinite sets we have the rather odd result that |A ∪
B| = |A| + |B| = max(|A|,|B|) whether the sets overlap or not.

•

 Combinatorial proof

• We can prove |A| + |B| = |A ∪ B| + |A ∩ B| combinatorially, by
turning both sides of the equation into disjoint unions (so the
sum rule works) and then providing an explicit bijection
between the resulting sets.

• The trick is that we can always force a union to be disjoint by
tagging the elements with extra information;

• so on the left-hand side we construct L = {0} × A ∪ {1} × B

• on the right-hand side we construct R = {0}×(A∪B)∪{1}×(A∩B).

•

A

A

A B

a

b c
a

b
d

e
g

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)
(1,b) (1,e)

(1,g)

• |L| = |A|+|B|

A

A

A B

a

b c
a

b
d

e
g

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• R = {0}×(A∪B)∪{1}×(A∩B)

A∪B

A
a

b c
d

e

g

A ∩ B

A
a

b

• |R| = |A∪B|+|A∩B|

• It is easy to see that both unions are disjoint, because we
are always taking the union of a set of ordered pairs that
start with 0 with a set of ordered pairs that start with 1,
and no ordered pair can start with both tags;

• it follows that |L| = |A|+|B| and |R| = |A∪B|+|A∩B|.

•

AA

• Now define the function f : L → R by the rule

• f((0,x)) = (0,x).

• f((1, x)) = (1, x) if x ∈ B ∩ A.

• f ((1, x)) = (0, x) if x ∈ B \ A.

•

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b) (1,e)
(1,g)

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• |R| = |A∪B|+|A∩B|

A

• Observe that f is surjective, because

• for any (0, x) in {0} × (A ∪ B), either x is in A and (0, x) = f ((0, x))
where (0, x) ∈ L,

• or x is in B \ A and (0, x) = f ((1, x)) where (1, x) ∈ L.

•

A

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b) (1,e)
(1,g)

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• |R| = |A∪B|+|A∩B|

f
• {0} × (A ∪ B)

AA

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b) (1,e)
(1,g)

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• |R| = |A∪B|+|A∩B|

f

• for any (1, x) in {1} × (A ∩ B), x is in A ∩ B and (1, x) = f ((1, x))
where (1, x) ∈ L,

•
• {1} × (A ∩ B)

• It is also true that f is injective; the only way for it not to
be is if f((0, x)) = f((1, x)) = (0, x) for some x.

• Suppose this occurs.

• Then x∈A (because of the 0 tag) and x∈B\A (because
(1,x) is only mapped to (0,x) if x∈B\A). But x can’t be in
both A and B\A, so we get a contradiction.

•

