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 Spanning trees  

•  A spanning tree of a nonempty connected graph G is a 
subgraph of G that includes all vertices and is a tree 


•



• Theorem 10.10.9. Every nonempty connected graph has 
a spanning tree. 


• Proof. Let G = (V,E) be a nonempty connected graph.


• We’ll show by induction on |E| that G has a spanning tree. 
The base case is |E| = |V | − 1 (the least value for which G 
can be connected); then G itself is a tree (by the theorem 
above). 



• For larger |E|, the same theorem gives that G contains a 
cycle. 


• Let uv be any edge on the cycle, and consider the graph 
G − uv; this graph is connected (since we can route any 
path that used to go through uv around the other edges 
of the cycle) and has fewer edges than G, so by the 
induction hypothesis there is some spanning tree T of G − 
uv. But then T also spans G, so we are done. 


•



 Eulerian cycles  

•  Theorem 10.10.10. Let G be a connected graph. Then G 
has an Eulerian cycle if and only if all nodes have even 
degree. 


•



•   (Only if part). Fix some cycle, and orient the edges by 
the direction that the cycle traverses them. Then in the 
resulting directed graph we must have d−(u) = d+(u) for all 
u, since every time we enter a vertex we have to leave it 
again. 


• But then d(u) = 2d+(u) is even. 


•



•  Suppose now that d(u) is even for all u. We will construct 
an Eulerian cycle on all nodes by induction on |E|. The 
base case is when |E| = 2|V | and G = C|V |. 


•  



•  For a larger graph, choose some starting node u1, and 
construct a path u1u2 . . . by choosing an arbitrary unused 
edge leaving each ui; this is always possible for ui       u1 

since whenever we reach ui  we have always consumed an 
even number of edges on previous visits plus one to get 
to it this time, leaving at least one remaining edge to leave 
on. 


• Since there are only finitely many edges and we can only 
use each one once, eventually we must get stuck, and 
this must occur with uk = u1 for some k. 


•
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•  Now  delete all the edges in u1 . . . uk from G, and consider 
the connected components of G − (u1 . . . uk). Removing the 
cycle reduces d(v) by an even number, so within each such 
connected component the degree of all vertices is even. It 
follows from the induction hypothesis that each connected 
component has an Eulerian cycle. 


• We’ll now string these per-component cycles together using 
our original cycle: while traversing u1 . . . , uk when we 
encounter some component for the first time, we take a 
detour around the component’s cycle. The resulting merged 
cycle gives an Eulerian cycle for the entire graph. 


•



•  Why doesn’t this work for Hamiltonian cycles? The 
problem is that in a Hamiltonian cycle we have too many 
choices: out of the d(u) edges incident to u, we will only 
use two of them. If we pick the wrong two early on, this 
may prevent us from ever fitting u into a Hamiltonian 
cycle. So we would need some stronger property of our 
graph to get Hamiltonicity. 


•



 Counting  

•  Counting is the process of creating a bijection between a 
set we want to count and some set whose size we 
already know. Typically this second set will be a finite 
ordinal [n] = {0, 1, . . . , n − 1}. 


•  Counting a set A using a bijection f : A → [n] gives its size 
|A| = n; this size is called the cardinality of n. 


•



•  As a side effect, it also gives a well-ordering of A, since 
[n] is well-ordered as we can define x ≤ y for x, y in A by 
x≤y if and only if f(x)≤f(y). 


•  Often the quickest way to find f is to line up all the 
elements of A in a well-ordering and then count them off: 
the smallest element of A gets mapped to 0, the next 
smallest to 1, and so on. 


•



 enumerative combinatorics  

•  standard counting principles based on how we 
constructed the set 


•  The branch of mathematics that studies sets constructed 
by combining other sets is called combinatorics 


•  the sub-branch that counts these sets is called 
enumerative combinatorics 


•



•  For infinite sets, cardinality is a little more complicated. 
The basic idea is that we define |A| = |B| if there is a 
bijection between them. 


• This gives an equivalence relation on sets2, and we define 
|A| to be the equivalence class of this equivalence relation 
that contains A. 


•



 Basic counting techniques  

•  the number of subsets of a set of size n, 


• the number of ways to put k cats into n boxes so that no 
box gets more than one cat 


•  thesetSn =︎x∈N︎
︎x<n2∧∃y:x=y2︎hasexactlyn members, because 

we can generate it by applying the one-to-one correspon- 
dencef(y)=y2 totheset{0,1,2,3,...,n−1}=[n] 


•



•  Constructing an explicit one-to-one correspondence is 
too time-consuming or too hard, so instead we will show 
how to 


• map set-theoretic operations to arithmetic operations, so 
that from a set-theoretic construction of a set we can 
often directly read off an arithmetic computation that 
gives the size of the set. 


•



•  Equality: reducing to a previously-solved case 


•



•  Inequalities: showing |A| ≤ |B| and |B| ≤ |A| 


•   We write |A| ≤ |B| if there is an injection f : A → B, and 
similarly |B| ≤ |A| if there is an injection g : B → A. If both 
conditions hold, then there is a bijection between A and 
B, showing |A| = |B|. This fact is trivial for finite sets, but 
for infinite sets—even though it is still true—the actual 
construction of the bijection is a little trickier.3 


•



•  Similarly, if we write |A| ≥ |B| to indicate that there is a 
surjection from A to B, then |A| ≥ |B| and |B| ≥ |A| implies |
A| = |B|. The easiest way to show this is to observe that if 
there is a surjection f : A → B, then we can get an 
injection f′ : B → A by letting f′(y) be any element of {x | f(x) 
= y}, thus reducing to the previous case 


•  Showing an injection f : A → B and a surjection g : A → B 
also works. 


•



•  For example, |Q| = |N|. 


• Proof: |N| ≤ |Q| because we can map any n in N to the same 
value in Q; this is clearly an injection. 


• To show |Q| ≤ |N|, observe that we can encode any element 
±p/q of Q, where p and q are both natural numbers, as a 
triple (s, p, q) where (s ∈ {0, 1} indicates + (0) or − (1); this 
encoding is clearly injective. 


• Then use the Cantor pairing function (§3.7.1) twice to crunch 
this triple down to a single natural number, getting an 
injection from Q to N. 


•



 Addition: the sum rule  

• The sum rule computes the size of A ∪ B when A and B are 
disjoint. Theorem 11.1.1. If A and B are finite sets with A ∩ B = 
∅, then |A ∪ B| = |A| + |B|. 


Proof. Let f : A → [|A|] and g : B → [|B|] be bijections. 
Define h : A∪B → [|A| + |B|] by the rule h(x) = f(x) for x ∈ A, h(x) = |
A| + g(x) for x ∈ B. 
To show that this is a bijection, define 

h−1(y) for y in [|A| + |B|] to be f−1(y) if y < |A| and g−1(y − |A|) otherwise. 

•
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Then for any y in [|A| + |B|], either

•  0 ≤ y < |A|, y is in the codomain of f 


•  h−1(y) = f−1(y) ∈ A is well-defined, and h(h−1(y)) = f(f−1(y)) = y.  

• |A| ≤ y < |A|+|B|. In this case 0 ≤ y−|A| < |B|, putting y−|A| in 
the codomain of g and giving h(h−1(y)) = g(g−1(y − |A|)) + |A| = 
y.  

So h−1 is in fact an inverse of h, meaning that h is a bijection. 

•



•  



 For infinite sets  

•  he sum rule works for infinite sets, too; technically, the 
sum rule is used to define |A| + |B| as |A ∪ B| when A and 
B are disjoint. This makes cardinal arithmetic a bit wonky: 
if at least one of A and B is infinite, then |A| + |B| = max(|
A|, |B|), since we can space out the elements of the larger 
of A and B and shove the elements of the other into the 
gaps. 


•



 The Pigeonhole Principle  

•  A consequence of the sum rule is that if A and B are both 
finite and |A| > |B|, you can’t have an injection from A to B. 


•  The proof is by contraposition. prove  p    q by verifying 
~q      ~p


•

→
→



•  Suppose f : A → B is an injection. 


• Write A as the union of f−1(x) for each x ∈ B, where f−1(x) is 
the set of y in A that map to x. Because each f−1(x) is 
disjoint, the sum rule applies; but because f is an injection 
there is at most one element in each f−1(x). 


•



•  It follows that |A| = ︎      
x∈B 

︎
︎f−1(x)︎

︎   ≤ ︎        
x∈B 1 = |B|.∑ ∑



•  


• If we have n boxes and we place more than n objects into them, then there 
will be at least one box that contains more than one object. 





 Subtraction  

•  For any sets A and B, A is the disjoint union of A∩B and 
A\B. 


• So |A| = |A ∩ B| + |A \ B| (for finite sets) by the sum rule. 


• Rearranging gives |A \ B| = |A| − |A ∩ B|.     (11.1.1) 


•



This is a special case of the inclusion-exclusion formula, which 
can be used to compute the size of the union of many sets using the 
size of pairwise, triple-wise, etc. intersections of the sets. 
•



 Inclusion-exclusion for 
infinite sets  

•  Subtraction doesn’t work very well for infinite quantities 
(while                             that doesn’t mean       = 0   ). 


•  



•  So the closest we can get to the inclusion- exclusion 
formula is that |A|+|B|=|A∪B|+|A∩B|. 


• If at least one of A or B is infinite, then |A ∪ B| is also 
infinite, and since |A ∩ B| ≤ |A ∪ B| we have |A ∪ B| + |A ∩ 
B| = |A ∪ B| by the bizarre rules of cardinal arithmetic. 


• So for infinite sets we have the rather odd result that |A ∪ 
B| = |A| + |B| = max(|A|,|B|) whether the sets overlap or not. 


•



 Combinatorial proof  

• We can prove |A| + |B| = |A ∪ B| + |A ∩ B| combinatorially, by 
turning both sides of the equation into disjoint unions (so the 
sum rule works) and then providing an explicit bijection 
between the resulting sets. 


• The trick is that we can always force a union to be disjoint by 
tagging the elements with extra information; 


• so on the left-hand side we construct L = {0} × A ∪ {1} × B


• on the right-hand side we construct R = {0}×(A∪B)∪{1}×(A∩B). 


•
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• L = {0} × A ∪ {1} × B
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(1,g)

•  |L| = |A|+|B| 
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• R = {0}×(A∪B)∪{1}×(A∩B)
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• |R| = |A∪B|+|A∩B|



•  It is easy to see that both unions are disjoint, because we 
are always taking the union of a set of ordered pairs that 
start with 0 with a set of ordered pairs that start with 1, 
and no ordered pair can start with both tags; 


• it follows that |L| = |A|+|B| and |R| = |A∪B|+|A∩B|. 


•



AA

•  Now define the function f : L → R by the rule 


• f((0,x)) = (0,x).


• f((1, x)) = (1, x) if x ∈ B ∩ A. 


• f ((1, x)) = (0, x) if x ∈ B \ A. 


•

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b) (1,e)
(1,g)

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• |R| = |A∪B|+|A∩B|



A

• Observe that f is surjective, because 


• for any (0, x) in {0} × (A ∪ B), either x is in A and (0, x) = f ((0, x)) 
where (0, x) ∈ L, 


• or x is in B \ A and (0, x) = f ((1, x)) where (1, x) ∈ L. 


•

A

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b) (1,e)
(1,g)

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• |R| = |A∪B|+|A∩B|

f
• {0} × (A ∪ B)



AA

• L = {0} × A ∪ {1} × B

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b) (1,e)
(1,g)

(0, a)

(0, b) (0, c)
(0, d)

(1,a)

(1,b)
(0,e)

(0,g)

• |R| = |A∪B|+|A∩B|

f

• for any (1, x) in {1} × (A ∩ B),  x is in A ∩ B and (1, x) = f ((1, x)) 
where (1, x) ∈ L, 


•
• {1} × (A ∩ B)



•  It is also true that f is injective; the only way for it not to 
be is if f((0, x)) = f((1, x)) = (0, x) for some x. 


• Suppose this occurs. 


• Then x∈A (because of the 0 tag) and x∈B\A (because 
(1,x) is only mapped to (0,x) if x∈B\A). But x can’t be in 
both A and B\A, so we get a contradiction. 


•




