
 count II 



 Multiplication: the product 
rule  

•  The product rule says that Cartesian product maps to 
arithmetic product. 


• Intuitively, we line the elements (a, b) of A × B in 
lexicographic order and count them off. 


• This looks very much like packing a two-dimensional 
array in a one-dimensional array by mapping each pair of 
indices (i, j) to i · |B| + j 


•

字典



Relate C(i,j) to D(k)

• C is an mxn array


• D(k) is related to C(i,j)


• for i      ,   


• k= i*n+j
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|B|=n=4
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•  Theorem 11.1.3. For any finite sets A and B,  

• |A × B| = |A| · |B|. 


•  Proof. The trick is to order A × B lexicographically and then 
count off the elements. Given bijections f : A → [|A|] and g : B 
→ [|B|], define h : (A×B) → [|A|·|B|] by the rule h((a,b)) = a·|B|+b. 


• The division  algorithm recovers a and b from h(a, b) by 
recovering the unique natural numbers q and r such that h(a, b) 
= q · |B| + r and 0 ≤ b < |B| and letting a = f−1(q) and b = g−1(r). 


•



 Relate D(k) to C(i,j) 

• C is an mxn array


• Relate D(k) to C(i,j)


• for k      ,   


• j= mod(k,n)


• i= (k-j)/n

|A|=m=5

|B|=n=4

≥ 0
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•  As I was going to Saint Ives, I met a man with seven 
sacks, and every sack had seven cats. How many cats 
total? 


• Answer: Label the sacks 0,1,2,...,6, and label the cats in 
each sack 0,1,2,...,6. Then each cat can be specified 
uniquely by giving a pair (sack number, cat number), 
giving a bijection between the set of cats and the set 7 × 
7. Since |7 × 7| = 7 · 7 = 49, we have 49 cats. 


•

 ⼤大布袋



•  Dr. Frankenstein’s trusty assistant Igor has brought him 6 
torsos, 4 brains, 8 pairs of matching arms, and 4 pairs of 
legs. How many different monsters can Dr Frankenstein 
build? 


• Answer: there is a one- to-one correspondence between 
possible monsters and 4-tuples of the form (torso, brain, 
pair of arms, pair of legs); the set of such 4-tuples has 6 · 
4 · 8 · 4 = 728 members. 


•

科學怪⼈



 order or sorting 

•  



 For infinite sets  

•  The product rule also works for infinite sets, because we 
again use it as a definition: for any A and B, |A| · |B| is 
defined to be |A × B| 


•  One oddity for infinite sets is that this definition gives |A| · 
|B| = |A| + |B| = max(|A|, |B|), because if at least one of A 
and B is infinite, it is possible to construct a bijection 
between A × B and the larger of A and B. Infinite sets are 
strange. 


•



 Exponentiation: the exponent 
rule  

•   If |B| is finite, this is just a |B|-fold application of the 
product rule: we can write any function f : B → A as a 
sequence of length |B| that gives the value in A for each 
input in B. Since each element of the sequence 
contributes |A| possible choices, we get |A||B| choices total. 


•



 For infinite sets  

•   For infinite sets, the exponent rule is a definition of |A||B|. 


•   Some simple facts are that nα = 2α
  whenever n is finite 

and α is infinite (this comes down to the fact that we can 
represent any element of [n] as a finite sequence of bits)


•  and αn = α under the same conditions (follows by 
induction on n from α · α = α).



 a combinatorial proof  

•  xaxb = xa+b, for any cardinal numbers x, a, and b. 


•  Let x = |X| and let a = |A| and b = |B| where A and B are 
disjoint (we can always use the tagging trick that we used 
for inclusion-exclusion to make A and B be disjoint). Then 


•



•  bijection f : XA∪B
 → XA×XB 


•  The input to f is a function g : A∪B → X; the output is a 
pair of functions (gA :A→X, gB :B→X). 


•  We define gA by gA(x) = g(x) for all x in A (this makes gA the 
restriction of g to A, usually written as 


•



•  This is easily seen to be a bijection 


•

h 
g



 Counting injections  

•  Counting injections from a k-element set to an n-element 
set corresponds to counting the number of ways P(n,k) 


• we can pick an ordered subset of k of n items without 
replacement, also known as picking a k-permutation. 
(The k elements of the domain correspond to the k 
positions in the order.) 


•

.Select k elements from n elements 

.permute k selected elements on a 
sequence



• ex 
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.Select 3 elements from 5 elements 

.permute 3 selected elements on a 
sequence
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•  nk counts the number of functions from a k-element set 
to an n-element set 


•  (n)k counts the number of injections from a k-element set 
to an n-element set, and 


• n! counts the number of bijections between two n-
element sets 


•
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 counting two ways  

• Let         denote the number of ways of choosing k elements from a set of n elements, S. 


•  count the number m of sequences of k elements of S with no repetitions 


•  By picking a size-k subset A and then choosing one of k! ways to order the elements. 
This gives m = |Sk| · k!.  

•  By choosing the first element in one of n ways, the second in one of n−1, the third in 
one of n−2 ways, and so on until the k-th element, which can be chosen in one of n − k 
+ 1 ways. 


•  This gives m=(n)k =n·(n−1)·(n−2)·…(n−k+1), which can be written as n!/(n − k)!  

•  

•

|Sk |



 binomial coefficient  

•  So we have m = |Sk| · k! = n!/(n − k)!, from which we get 


•



 Binomial coefficients  

  

•  The binomial coefficient “n choose k”, written


•   counts the number of k-element subsets of an n-element 
set. 


•



 Multinomial coefficients 
•    let the multinomial coeffi-cient 


•  


•  be the number of different ways to distribute n items among k bins where the i-th 
bin gets exactly ni  of the items and we don’t care what order the items appear in 
each bin. (Obviously this only makes sense if n1+n2+···+nk =n.) 


•



Two ways
•  Here are two ways to count the number of permutations of the n-

element set: 


•  1. Pick the first element, then the second, etc., to get n! permutations. 


•  2. Generate a permutation in three steps: 


• (a) Pick a partition of the n elements into blocks of size n1, n2, . . . 
nk. 


• (b) Order the elements of each block. 


• (c) Paste the blocks together into a single ordered list. 


•



•  



•  a rule of the form x is in S if either P(x) or Q(x) is true 


•  use the sum rule (if P and Q are mutually exclusive) or 
inclusion- exclusion 


•  e.g. x is a tree of depth at most k if it is either (a) a single 
leaf node (provided k > 0) or (b) a root node with two 
subtrees of depth at most k−1 


•  T(k) = 1 + T(k − 1)2  with T(0) = 0.4 


•

depth k-1

. .  .. .  .



•  For objects made out of many small components or 
resulting from many small decisions, try to reduce the 
description of the object to something previously known


•   (a) a word of length k of letters from an alphabet of size n 
allowing repetition (there are nk  of them, by the product 
rule); 


•  



•  (b) a word of length k not allowing repetition (there are 
(n)k of them—or n! if n = k); 


•  (c) a subset of k distinct things from a set of size n, where 
we don’t care about the order  ( there are        of them)


•



•  The number of games of Tic-Tac-Toe assuming both 
players keep playing until the board is filled 


•  each such game can be specified by listing which of the 9 
squares are filled in order, giving 9! = 362880 distinct 
games. 


•



•  only consider games that end when one player wins 


•  probably the easiest way to count such games is to send 
a computer off to generate all of them. This gives 255168 
possible games and 958 distinct final positions 


• How to count this by a program?


• https://archive.ics.uci.edu/ml/datasets/Tic-Tac-
Toe+Endgame 

https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame


•  suppose you win n identical cars on a game show and want to 
divide them among your k greedy relatives 


•  it’s OK if some people don’t get a car at all 


•  putting n cars and k − 1 dividers in a line 


•   


• Assume that each car—and each divider—takes one parking space. 
Then you have n + k − 1 parking spaces with k − 1 dividers in them 
(and cars in the rest). There are exactly ︎                                                    ways to do this. 


•

1 2 3 5 cars 4 dividers

1 2 3

>> factorial(8)/(factorial(5)*factorial(3)) 

ans = 

    56 



• (5,0,0,0)  -  4 


• (4,1,0,0)  - 4*3


• (3,2,0,0)  - 4*3


• (3,1,1,0)  - 4*3


• (2,2,1,0)  - 4*3


• (2,1,1,1) - 4


• 12*4+8 = 56

Divide 5 cars to 4 groups, then assign these four groups to 4 different relatives



•  suppose you win n identical cars on a game show and 
want to divide them among your k greedy relatives


•  Then you can just hand out one car to each relative to 
start with, leaving n − k cars to divide as in the previous 
case. There are                                     ways to do this. 


•  


•

factorial(4)/(factorial(1)*factorial(3)) 

ans = 

     4 



• Divide one card to four groups, then assign these groups 
to 4 relatives


• (1,0,0,0)  -  4 


•

Divide 1 car to 4 relatives



  binomial theorem of  

Isaac Newton  



 n is a non-negative integer  

•  The connection between (11.2.3) and counting subsets is 
straightforward: expanding (x + y)n using the distributive law 
gives 2n terms, each of which is a unique sequence of n x’s 
and y’s. 


• If we think of the x’s in each term as labeling a subset of the 
n positions in the term, the terms that get added together to 
get xkyn−k correspond one-to-one to subsets of size k. 


• So there are ︎︎                such terms, accounting for the coefficient 
on the right-hand side. 


•



 Recursive definition  



•  On the left-hand side, we are counting all the k-element 
subsets of an n-element set S. 


• On the right hand side, we are counting two different 
collections of sets: the (k − 1)-element and k-element 
subsets of an (n − 1)- element set. The trick is to 
recognize that we get an (n − 1)-element set S′ from our 
original set by removing one of the elements x.  

•



•  If the subset doesn’t contain x, it doesn’t change. So 
there is a one- to-one correspondence (the identity 
function) between k-subsets of S that don’t contain x and 
k-subsets of S′. This bijection accounts for the first term 
on the right-hand side. 


•



•  If the subset does contain x, then we get a (k − 1)-
element subset of S′ when we remove it. Since we can go 
back the other way by reinserting x, we get a bijection 
between k-subsets of S that contain x and (k − 1)-subsets 
of S′. This bijection accounts for the second term on the 
right-hand side. 


•





 Vandermonde’s identity  



•  To pick r elements of an m + n element set, we have to 
pick some of them from the first m elements and some 
from the second n elements. 


•   we choose k elements from the last n 


•




