count II

Multiplication: the product rule

- The **product rule** says that Cartesian product maps to arithmetic product.
- Intuitively, we line the elements (a, b) of A × B in lexicographic order and count them off.
 字典
- This looks very much like packing a two-dimensional array in a one-dimensional array by mapping each pair of indices (i, j) to i · |B| + j

Relate C(i,j) to D(k)

|A|=m=5

|B|=n=4

- C is an mxn array
- D(k) is related to C(i,j)
- for $\mathbf{i} \ge 0$, $j \ge 0$
 - k= i*n+j

	0	1	2	3
0	D(0)	D(1)	D(2)	D(3)
1	D(4)			
2				
3				
4				D(19)

- $|A \times B| = |A| \cdot |B|$.
- *Proof.* The trick is to order A × B lexicographically and then count off the elements. Given bijections $f : A \rightarrow [|A|]$ and $g : B \rightarrow [|B|]$, define h : (A×B) $\rightarrow [|A| \cdot |B|]$ by the rule h((a,b)) = a \cdot |B|+b.
- The division algorithm recovers a and b from h(a, b) by recovering the unique natural numbers q and r such that h(a, b)
 = q · |B| + r and 0 ≤ b < |B| and letting a = f⁻¹(q) and b = g⁻¹(r).

Relate D(k) to C(i,j)

|B|=n=4

- C is an mxn array
- Relate D(k) to C(i,j)
- for $\mathbf{k} \ge 0$,
 - j= mod(k,n)
 - i= (k-j)/n

	-	0	1	2	3
	0	D(0)	D(1)	D(2)	D(3)
ay C(i,j)	1	D(4)			
	2				
	3				
	4				D(19)
A =m=	=5				

The general form is

$$\left|\prod_{i=1}^{k} A_i\right| = \prod_{i=1}^{k} |A_i|,$$

where the product on the left is a Cartesian product and the product o the right is an ordinary integer product.

- As I was going to Saint Ives, I met a man with seven sacks, and every sack had seven cats. How many cats total?
- Answer: Label the sacks 0,1,2,...,6, and label the cats in each sack 0,1,2,...,6. Then each cat can be specified uniquely by giving a pair (sack number, cat number), giving a bijection between the set of cats and the set 7 × 7. Since |7 × 7| = 7 · 7 = 49, we have 49 cats.

- Dr. Frame in 's trusty assistant Igor has brought him 6 torsos, 4 brains, 8 pairs of matching arms, and 4 pairs of legs. How many different monsters can Dr Frankenstein build?
- Answer: there is a one- to-one correspondence between possible monsters and 4-tuples of the form (torso, brain, pair of arms, pair of legs); the set of such 4-tuples has $6 \cdot$ $4 \cdot 8 \cdot 4 = 728$ members.

order or sorting

How many different ways can you order n items? Call this quantity n! (pronounced "n factorial"). With 0 or 1 items, there is only one way; so we have 0! = 1! = 1. For n > 1, there are n choices for the first item, leaving n - 1 items to be ordered. From the product rule we thus have $n! = n \cdot (n - 1)!$, which we can expand out as $\prod_{i=1}^{n} i$, our previous definition of n!.

For infinite sets

- The product rule also works for infinite sets, because we again use it as a definition: for any A and B, |A| · |B| is defined to be |A × B|
 - One oddity for infinite sets is that this definition gives $|A| \cdot |B| = |A| + |B| = max(|A|, |B|)$, because if at least one of A and B is infinite, it is possible to construct a bijection between A × B and the larger of A and B. Infinite sets are strange.

•

Exponentiation: the exponent rule

Given sets A and B, let A^B be the set of functions $f : B \to A$. The $|A^B| = |A|^{|B|}$.

If |B| is finite, this is just a |B|-fold application of the product rule: we can write any function f : B → A as a sequence of length |B| that gives the value in A for each input in B. Since each element of the sequence contributes |A| possible choices, we get |A|^{|B|} choices total.

For infinite sets

- For infinite sets, the exponent rule is a definition of $|A|^{|B|}$.
- Some simple facts are that $n^{\alpha} = 2^{\alpha}$ whenever n is finite and α is infinite (this comes down to the fact that we can represent any element of [n] as a finite sequence of bits)
- and $a^n = a$ under the same conditions (follows by induction on n from $a \cdot a = a$).

•

a combinatorial proof

- $x^a x^b = x^{a+b}$, for any cardinal numbers x, a, and b.
- · Let x = |X| and let a = |A| and b = |B| where A and B are disjoint (we can always use the tagging trick that we used for inclusion-exclusion to make A and B be disjoint). Then

$$x^a x^b = \left| X^A \times X^B \right|$$
 and $x^{a+b} = \left| X^{A \cup B} \right|$

• bijection f : $X^{A \cup B} \rightarrow X^A \times X^B$

•

•

• The input to f is a function g : $A \cup B \rightarrow X$; the output is a pair of functions ($g_A: A \rightarrow X$, $g_B: B \rightarrow X$).

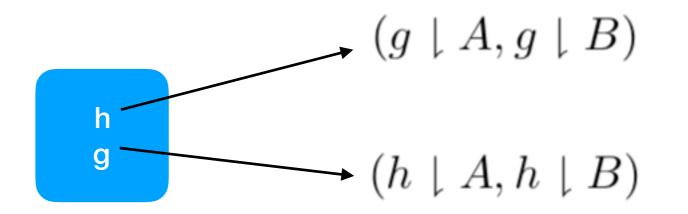
We define g_A by $g_A(x) = g(x)$ for all x in A (this makes g_A the **restriction** of g to A, usually written as

 $g \mid A \text{ or } g \mid A$); similarly $g_B = g \mid B$

This is easily seen to be a bijection

if
$$g = h$$
, then $f(g) = (g \downarrow A, g \downarrow B) = f(h) = (h \downarrow A, h \downarrow B)$

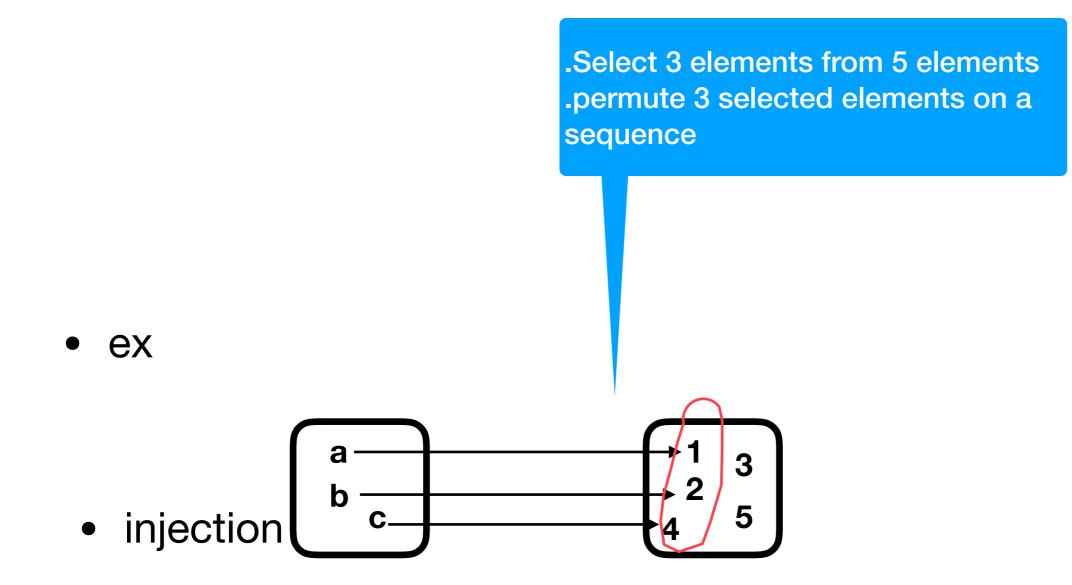
and if $g \neq h$ there is some x for which $g(x) \neq h(x)$, implying $g \mid A \neq h \mid A$ (if x is in A) or $g \mid B \neq h \mid B$ (if x is in B).



Counting injections

.Select k elements from n elements .permute k selected elements on a sequence

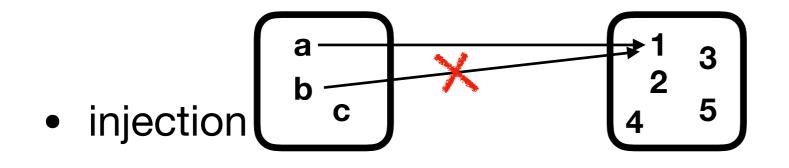
- Counting injections from a k-element set to an n-element set corresponds to counting the number of ways P(n,k)
- we can pick an ordered subset of k of n items without replacement, also known as picking a k-permutation. (The k elements of the domain correspond to the k positions in the order.)



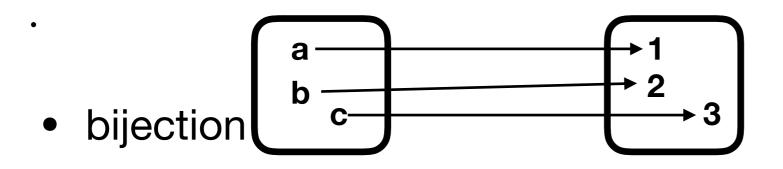
$$P(n,k) = \prod_{i=n-k+1}^{n} i = \frac{n!}{(n-k)!}$$

such k-permutations by the product rule.

Among combinatorialists, the notation $(n)_k$ (pronounced "*n* lowerfactorial k") is more common than P(n,k) for $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)$. As an extreme case we have $(n)_n = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-n+1) = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 = n!$, so n! counts the number of **permutations** of n.



- n^k counts the number of functions from a k-element set to an n-element set
- (n)_k counts the number of injections from a k-element set to an n-element set, and
- n! counts the number of bijections between two nelement sets



counting two ways

- Let $|S_k|$ denote the number of ways of choosing k elements from a set of n elements, S.
- count the number m of sequences of k elements of S with no repetitions
 - By picking a size-k subset A and then choosing one of k! ways to order the elements. This gives $m = |S_k| \cdot k!$.
 - By choosing the first element in one of n ways, the second in one of n-1, the third in one of n-2 ways, and so on until the k-th element, which can be chosen in one of n - k + 1 ways.
 - This gives $m=(n)_k=n\cdot(n-1)\cdot(n-2)\cdot\ldots(n-k+1)$, which can be written as n!/(n-k)!
 - •

•

binomial coefficient

• So we have $m = |S_k| \cdot k! = n!/(n - k)!$, from which we get

$$|S_k| = \frac{n!}{k! \cdot (n-k)!}.$$

This quantity turns out to be so useful that it has a special notation:

$$\binom{n}{k} \stackrel{\text{def}}{=} \frac{n!}{k! \cdot (n-k)!}.$$

Binomial coefficients

• The **binomial coefficient** "n choose k", written

$$\binom{n}{k} = \frac{(n)_k}{k!} = \frac{n!}{k! \cdot (n-k)!},$$
(11.2.1)

counts the number of k-element <u>subsets</u> of an n-element set.

Multinomial coefficients

• let the multinomial coeffi-cient

$$\binom{n}{n_1 \ n_2 \ \dots \ n_k}$$

 be the number of different ways to distribute n items among k bins where the i-th bin gets exactly n_i of the items and we don't care what order the items appear in each bin. (Obviously this only makes sense if n₁+n₂+···+n_k=n.)

Two ways

- Here are two ways to count the number of permutations of the nelement set:
 - 1. Pick the first element, then the second, etc., to get n! permutations.
 - 2. Generate a permutation in three steps:

•

•

- (a) Pick a partition of the n elements into blocks of size n₁, n₂, . . . n_k.
- (b) Order the elements of each block.
- (c) Paste the blocks together into a single ordered list.

There are

$$\binom{n}{n_1 \ n_2 \ \dots \ n_k}$$

ways to pick the partition and

 $n_1! \cdot n_2! \cdots n_k!$

ways to order the elements of all the groups, so we have

$$n! = \begin{pmatrix} n \\ n_1 n_2 \dots n_k \end{pmatrix} \cdot n_1! \cdot n_2! \cdots n_k!,$$

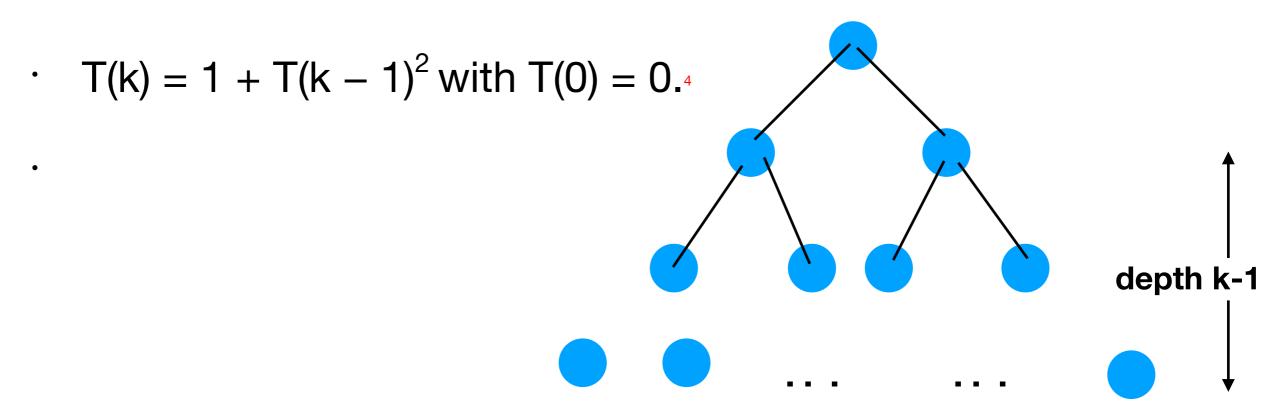
which we can solve to get

$$\binom{n}{n_1 n_2 \dots n_k} = \frac{n!}{n_1! \cdot n_2! \cdots n_k!}.$$

- a rule of the form x is in S if either P(x) or Q(x) is true
- use the sum rule (if P and Q are mutually exclusive) or inclusion- exclusion

•

e.g. x is a tree of depth at most k if it is either (a) a single leaf node (provided k > 0) or (b) a root node with two subtrees of depth at most k-1



- For objects made out of many small components or resulting from many small decisions, try to reduce the description of the object to something previously known
- (a) a word of length k of letters from an alphabet of size n allowing repetition (there are n^k of them, by the product rule);

(b) a word of length k not allowing repetition (there are (n)_k of them—or n! if n = k);

· (c) a subset of k distinct things from a set of size n, where we don't care about the order (there are $\binom{n}{k}$ of them)

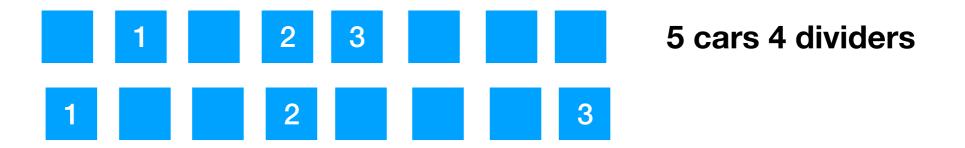
• The number of games of Tic-Tac-Toe assuming both players keep playing until the board is filled

•

each such game can be specified by listing which of the 9 squares are filled in order, giving 9! = 362880 distinct games.

- only consider games that end when one player wins
- probably the easiest way to count such games is to send a computer off to generate all of them. This gives 255168 possible games and 958 distinct final positions
- How to count this by a program?
- <u>https://archive.ics.uci.edu/ml/datasets/Tic-Tac-</u>
 <u>Toe+Endgame</u>

- suppose you win n identical cars on a game show and want to divide them among your k greedy relatives
- · it's OK if some people don't get a car at all
- putting n cars and k 1 dividers in a line



• Assume that each car—and each divider—takes one parking space. Then you have n + k - 1 parking spaces with k - 1 dividers in them (and cars in the rest). There are exactly $\binom{n+k-1}{k-1}$ ways to do this.

>> factorial(8)/(factorial(5)*factorial(3))

ans =

Divide 5 cars to 4 groups, then assign these four groups to 4 different relatives

- (5,0,0,0) 4
- (4,1,0,0) 4*3
- (3,2,0,0) 4*3
- (3,1,1,0) 4*3
- (2,2,1,0) 4*3
- (2,1,1,1) 4
- 12*4+8 = 56

- suppose you win n identical cars on a game show and want to divide them among your k greedy relatives
- Then you can just hand out one car to each relative to start with, leaving n k cars to divide as in the previous case. There are $\binom{(n-k)+k-1}{k-1} = \binom{n-1}{k-1}$ ways to do this.

factorial(4)/(factorial(1)*factorial(3))

ans =

4

Divide 1 car to 4 relatives

- Divide one card to four groups, then assign these groups to 4 relatives
- (1,0,0,0) 4

binomial theorem of Isaac Newton

Theorem 11.2.1 (Binomial theorem). For any $n \in \mathbb{R}$,

$$(x+y)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k y^{n-k},$$
 (11.2.2)

provided the sum converges.

A sufficient condition for the sum converging is |x/y| < 1. For the general version of the theorem, $\binom{n}{k}$ is defined as $(n)_k / k!$, which works even if n is not a non-negative integer. The usual proof requires calculus.

n is a non-negative integer $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$

- The connection between (11.2.3) and counting subsets is straightforward: expanding (x + y)ⁿ using the distributive law gives 2ⁿ terms, each of which is a unique sequence of n x's and y's.
- If we think of the x's in each term as labeling a subset of the n positions in the term, the terms that get added together to get x^ky^{n-k} correspond one-to-one to subsets of size k.
- So there are $\binom{n}{k}$ such terms, accounting for the coefficient on the right-hand side.

Recursive definition

Base cases:

- If k = 0, then there is exactly one zero-element set of our *n*-elem set—it's the empty set—and we have $\binom{n}{0} = 1$.
- If k > n, then there are no k-element subsets, and we have $\forall k > \binom{n}{k} = 0$.

Recursive step: We'll use Pascal's identity, which says that

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

- On the left-hand side, we are counting all the k-element subsets of an n-element set S.
- On the right hand side, we are counting two different collections of sets: the (k 1)-element and k-element subsets of an (n 1)- element set. The trick is to recognize that we get an (n 1)-element set S' from our original set by removing one of the elements x.

 If the subset doesn't contain x, it doesn't change. So there is a one- to-one correspondence (the identity function) between k-subsets of S that don't contain x and k-subsets of S[']. This bijection accounts for the first term on the right-hand side.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

 If the subset does contain x, then we get a (k – 1)element subset of S['] when we remove it. Since we can go back the other way by reinserting x, we get a bijection between k-subsets of S that contain x and (k – 1)-subsets of S[']. This bijection accounts for the second term on the right-hand side.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

re's the proof of Pascal's identity:

$$\begin{split} \sum_{k=0}^{n} \binom{n}{k} x^{k} &= (1+x)^{n} \\ &= (1+x)(1+x)^{n-1} \\ &= (1+x)^{n-1} + x(1+x)^{n-1} \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} + x \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} + \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k+1} \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} + \sum_{k=1}^{n} \binom{n-1}{k-1} x^{k} \\ &= \sum_{k=0}^{n} \binom{n-1}{k} x^{k} + \sum_{k=0}^{n} \binom{n-1}{k-1} x^{k} \\ &= \sum_{k=0}^{n} \binom{n-1}{k} + \binom{n-1}{k-1} x^{k}. \end{split}$$

Vandermonde's identity

Vandermonde's identity says that, provided r does not exceed m or r

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}.$$

- To pick r elements of an m + n element set, we have to pick some of them from the first m elements and some from the second n elements.
 - we choose k elements from the last n

•

$$\left(\sum_{i=0}^n a_i x^i\right) \left(\sum_{i=0}^m b_i x^i\right) = \sum_{i=0}^{m+n} \left(\sum_{j=0}^i a_j b_{i-j}\right) x^i.$$

So now consider

$$\sum_{r=0}^{m+n} \binom{m+n}{r} x^r = (1+x)^{m+n}$$
$$= (1+x)^n (1+x)^m$$
$$= \left(\sum_{i=0}^n \binom{n}{i} x^i\right) \left(\sum_{j=0}^m \binom{m}{j} x^j\right)$$
$$= \sum_{r=0}^{m+n} \left(\sum_{k=0}^r \binom{n}{k} \binom{m}{r-k}\right) x^r.$$