
 count II

 Multiplication: the product
rule

• The product rule says that Cartesian product maps to
arithmetic product.

• Intuitively, we line the elements (a, b) of A × B in
lexicographic order and count them off.

• This looks very much like packing a two-dimensional
array in a one-dimensional array by mapping each pair of
indices (i, j) to i · |B| + j

•

字典

Relate C(i,j) to D(k)

• C is an mxn array

• D(k) is related to C(i,j)

• for i ,

• k= i*n+j

|A|=m=5

|B|=n=4

≥ 0 j ≥ 0

0 1 2

0

1

2

3

3

4

D(0) D(1) D(2) D(3)

D(4)

D(19)

• Theorem 11.1.3. For any finite sets A and B,

• |A × B| = |A| · |B|.

• Proof. The trick is to order A × B lexicographically and then
count off the elements. Given bijections f : A → [|A|] and g : B
→ [|B|], define h : (A×B) → [|A|·|B|] by the rule h((a,b)) = a·|B|+b.

• The division algorithm recovers a and b from h(a, b) by
recovering the unique natural numbers q and r such that h(a, b)
= q · |B| + r and 0 ≤ b < |B| and letting a = f−1(q) and b = g−1(r).

•

 Relate D(k) to C(i,j)

• C is an mxn array

• Relate D(k) to C(i,j)

• for k ,

• j= mod(k,n)

• i= (k-j)/n

|A|=m=5

|B|=n=4

≥ 0

0 1 2

0

1

2

3

3

4

D(0) D(1) D(2) D(3)

D(4)

D(19)

• As I was going to Saint Ives, I met a man with seven
sacks, and every sack had seven cats. How many cats
total?

• Answer: Label the sacks 0,1,2,...,6, and label the cats in
each sack 0,1,2,...,6. Then each cat can be specified
uniquely by giving a pair (sack number, cat number),
giving a bijection between the set of cats and the set 7 ×
7. Since |7 × 7| = 7 · 7 = 49, we have 49 cats.

•

 ⼤大布袋

• Dr. Frankenstein’s trusty assistant Igor has brought him 6
torsos, 4 brains, 8 pairs of matching arms, and 4 pairs of
legs. How many different monsters can Dr Frankenstein
build?

• Answer: there is a one- to-one correspondence between
possible monsters and 4-tuples of the form (torso, brain,
pair of arms, pair of legs); the set of such 4-tuples has 6 ·
4 · 8 · 4 = 728 members.

•

科學怪⼈

 order or sorting

•

 For infinite sets

• The product rule also works for infinite sets, because we
again use it as a definition: for any A and B, |A| · |B| is
defined to be |A × B|

• One oddity for infinite sets is that this definition gives |A| ·
|B| = |A| + |B| = max(|A|, |B|), because if at least one of A
and B is infinite, it is possible to construct a bijection
between A × B and the larger of A and B. Infinite sets are
strange.

•

 Exponentiation: the exponent
rule

• If |B| is finite, this is just a |B|-fold application of the
product rule: we can write any function f : B → A as a
sequence of length |B| that gives the value in A for each
input in B. Since each element of the sequence
contributes |A| possible choices, we get |A||B| choices total.

•

 For infinite sets

• For infinite sets, the exponent rule is a definition of |A||B|.

• Some simple facts are that nα = 2α
 whenever n is finite

and α is infinite (this comes down to the fact that we can
represent any element of [n] as a finite sequence of bits)

• and αn = α under the same conditions (follows by
induction on n from α · α = α).

 a combinatorial proof

• xaxb = xa+b, for any cardinal numbers x, a, and b.

• Let x = |X| and let a = |A| and b = |B| where A and B are
disjoint (we can always use the tagging trick that we used
for inclusion-exclusion to make A and B be disjoint). Then

•

• bijection f : XA∪B
 → XA×XB

• The input to f is a function g : A∪B → X; the output is a
pair of functions (gA :A→X, gB :B→X).

• We define gA by gA(x) = g(x) for all x in A (this makes gA the
restriction of g to A, usually written as

•

• This is easily seen to be a bijection

•

h
g

 Counting injections

• Counting injections from a k-element set to an n-element
set corresponds to counting the number of ways P(n,k)

• we can pick an ordered subset of k of n items without
replacement, also known as picking a k-permutation.
(The k elements of the domain correspond to the k
positions in the order.)

•

.Select k elements from n elements

.permute k selected elements on a
sequence

• ex

a
b c

1
2

3
54• injection

.Select 3 elements from 5 elements

.permute 3 selected elements on a
sequence

a
b c

1
2

3
54• injection

• nk counts the number of functions from a k-element set
to an n-element set

• (n)k counts the number of injections from a k-element set
to an n-element set, and

• n! counts the number of bijections between two n-
element sets

•
a
b c

1
2

3• bijection

 counting two ways

• Let denote the number of ways of choosing k elements from a set of n elements, S.

• count the number m of sequences of k elements of S with no repetitions

• By picking a size-k subset A and then choosing one of k! ways to order the elements.
This gives m = |Sk| · k!.  

• By choosing the first element in one of n ways, the second in one of n−1, the third in
one of n−2 ways, and so on until the k-th element, which can be chosen in one of n − k
+ 1 ways.

• This gives m=(n)k =n·(n−1)·(n−2)·…(n−k+1), which can be written as n!/(n − k)!  

•  

•

|Sk |

 binomial coefficient

• So we have m = |Sk| · k! = n!/(n − k)!, from which we get

•

 Binomial coefficients

• The binomial coefficient “n choose k”, written

• counts the number of k-element subsets of an n-element
set.

•

 Multinomial coefficients 
• let the multinomial coeffi-cient

•

• be the number of different ways to distribute n items among k bins where the i-th
bin gets exactly ni of the items and we don’t care what order the items appear in
each bin. (Obviously this only makes sense if n1+n2+···+nk =n.)

•

Two ways
• Here are two ways to count the number of permutations of the n-

element set:

• 1. Pick the first element, then the second, etc., to get n! permutations.

• 2. Generate a permutation in three steps:

• (a) Pick a partition of the n elements into blocks of size n1, n2, . . .
nk.

• (b) Order the elements of each block.

• (c) Paste the blocks together into a single ordered list.

•

•

• a rule of the form x is in S if either P(x) or Q(x) is true

• use the sum rule (if P and Q are mutually exclusive) or
inclusion- exclusion

• e.g. x is a tree of depth at most k if it is either (a) a single
leaf node (provided k > 0) or (b) a root node with two
subtrees of depth at most k−1

• T(k) = 1 + T(k − 1)2 with T(0) = 0.4

•

depth k-1

.

• For objects made out of many small components or
resulting from many small decisions, try to reduce the
description of the object to something previously known

• (a) a word of length k of letters from an alphabet of size n
allowing repetition (there are nk of them, by the product
rule);

•

• (b) a word of length k not allowing repetition (there are
(n)k of them—or n! if n = k);

• (c) a subset of k distinct things from a set of size n, where
we don’t care about the order (there are of them)

•

• The number of games of Tic-Tac-Toe assuming both
players keep playing until the board is filled

• each such game can be specified by listing which of the 9
squares are filled in order, giving 9! = 362880 distinct
games.

•

• only consider games that end when one player wins

• probably the easiest way to count such games is to send
a computer off to generate all of them. This gives 255168
possible games and 958 distinct final positions

• How to count this by a program?

• https://archive.ics.uci.edu/ml/datasets/Tic-Tac-
Toe+Endgame

https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

• suppose you win n identical cars on a game show and want to
divide them among your k greedy relatives

• it’s OK if some people don’t get a car at all

• putting n cars and k − 1 dividers in a line

•

• Assume that each car—and each divider—takes one parking space.
Then you have n + k − 1 parking spaces with k − 1 dividers in them
(and cars in the rest). There are exactly ︎ ways to do this.

•

1 2 3 5 cars 4 dividers

1 2 3

>> factorial(8)/(factorial(5)*factorial(3))

ans =

 56

• (5,0,0,0) - 4

• (4,1,0,0) - 4*3

• (3,2,0,0) - 4*3

• (3,1,1,0) - 4*3

• (2,2,1,0) - 4*3

• (2,1,1,1) - 4

• 12*4+8 = 56

Divide 5 cars to 4 groups, then assign these four groups to 4 different relatives

• suppose you win n identical cars on a game show and
want to divide them among your k greedy relatives

• Then you can just hand out one car to each relative to
start with, leaving n − k cars to divide as in the previous
case. There are ways to do this.

•

•

factorial(4)/(factorial(1)*factorial(3))

ans =

 4

• Divide one card to four groups, then assign these groups
to 4 relatives

• (1,0,0,0) - 4

•

Divide 1 car to 4 relatives

 binomial theorem of

Isaac Newton

 n is a non-negative integer

• The connection between (11.2.3) and counting subsets is
straightforward: expanding (x + y)n using the distributive law
gives 2n terms, each of which is a unique sequence of n x’s
and y’s.

• If we think of the x’s in each term as labeling a subset of the
n positions in the term, the terms that get added together to
get xkyn−k correspond one-to-one to subsets of size k.

• So there are ︎︎ such terms, accounting for the coefficient
on the right-hand side.

•

 Recursive definition

• On the left-hand side, we are counting all the k-element
subsets of an n-element set S.

• On the right hand side, we are counting two different
collections of sets: the (k − 1)-element and k-element
subsets of an (n − 1)- element set. The trick is to
recognize that we get an (n − 1)-element set S′ from our
original set by removing one of the elements x.  

•

• If the subset doesn’t contain x, it doesn’t change. So
there is a one- to-one correspondence (the identity
function) between k-subsets of S that don’t contain x and
k-subsets of S′. This bijection accounts for the first term
on the right-hand side.

•

• If the subset does contain x, then we get a (k − 1)-
element subset of S′ when we remove it. Since we can go
back the other way by reinserting x, we get a bijection
between k-subsets of S that contain x and (k − 1)-subsets
of S′. This bijection accounts for the second term on the
right-hand side.

•

 Vandermonde’s identity

• To pick r elements of an m + n element set, we have to
pick some of them from the first m elements and some
from the second n elements.

• we choose k elements from the last n

•

