count Il



Multiplication: the product
rule

 The product rule says that Cartesian product maps to
arithmetic product.

e |ntuitively, we line the elements (a, b) of A x B in
lexicographic order and count them off.
T
e This looks very much like packing a two-dimensional

array in a one-dimensional array by mapping each pair of
indices (i, j)toi - |B| + |



Relate C(i,j) to D(k)

e Cis an mxn array

0

1

* D(K) is related to C(i,j) ,,

e fori>0, j>0

e K= i"n+j

|A|=m=5

Bl=n=4
3
D(0) D(1) D(2) D(3)
D(4)
D(19)




Proof. The trick is to order A x B lexicographically and then
count off the elements. Given bijectionsf: A = [|A[land g : B
— [|B]], define h : (AxB) — [|A||B|] by the rule h((a,b)) = a:|B|+b.

 The division algorithm recovers a and b from h(a, b) by
recovering the unique natural numbers g and r such that h(a, b)

=q-|B|+rand 0 <b < |B|and lettinga = f'(g) and b = g'(n).



Relate D(k) to C(i,j)

e Cis an mxn array

e Relate D(k) to C(i,))

e fork=0,
e j=mod(k,n)

e i=(k-j)/n

|Al=m=5

|B|=n=4
0 1 2 3
D(0) D() D(2) D(3)
D(4)
D(19)




The general form is

k k
=1 1=1

where the product on the left is a Cartesian product and the product o
the right is an ordinary integer product.




e As | was going to Saint Ives, | met a man with seven
__sacks, and every sack had seven cats. How many cats
total?

AN

e Answer: Label the sacks 0,1,2,...,6, and label the cats In
each sack 0,1,2,...,6. Then each cat can be specified
unigquely by giving a pair (sack number, cat number),
giving a bijection between the set of cats and the set 7 x
7.Since |7 x 7| =7 -7 =49, we have 49 cats.



e Dr Fraﬁ?—é.r .ojl\eln’s trusty assistant Igor has brought him 6

torsos, 4 brains, 8 pairs of matching arms, and 4 pairs of
legs. How many different monsters can Dr Frankenstein
build?

e Answer: there is a one- to-one correspondence between
possible monsters and 4-tuples of the form (torso, brain,
pair of arms, pair of legs); the set of such 4-tuples has 6 -
4-8-4 =728 members.



order or sorting

How many different ways can you order n items?” Call this quantity
n! (pronounced “n factorial”). With 0 or 1 items, there is only one
way; so we have 0! = 1! = 1. For n > 1, there are n choices for the
first item, leaving n — 1 items to be ordered. From the product rule
we thus have n! =n - (n — 1)!, which we can expand out as [['"_; ¢, ow

previous definition of n!.



For Infinite sets

The product rule also works for infinite sets, because we
again use it as a definition: for any A and B, |A| - |B| is
defined to be |A x B|

One oddity for infinite sets is that this definition gives |A| -
IB| = |[A| + |B| = max(|A|, |B|), because if at least one of A
and B is infinite, it is possible to construct a bijection
between A x B and the larger of A and B. Infinite sets are
strange.



Exponentiation: the exponent
rule

Given sets A and B, let A® be the set of functions f : B — A. The

e |f |B|is finite, this is just a |B|-fold application of the
product rule: we can write any functionf: B - Aas a
sequence of length |B| that gives the value in A for each
input in B. Since each element of the sequence

contributes |A| possible choices, we get |A|® choices total.



For Infinite sets

* For infinite sets, the exponent rule is a definition of |A|'B'.

Some simple facts are that n® = 2” whenever n is finite
and a is infinite (this comes down to the fact that we can
represent any element of [n] as a finite sequence of bits)

e and a"= a under the same conditions (follows by
induction on n froma - a = a).



a combinatorial proof

e Xx3P=x"P for any cardinal numbers x, a, and b.

Let x = |X| and let a = |A| and b = |B| where A and B are
disjoint (we can always use the tagging trick that we used
for inclusion-exclusion to make A and B be disjoint). Then

o0 = | XA x XP| and xott = | XAVB




* bijection f: X™® = X"xX°

The input to f is a function g : AuB — X; the output is a
pair of functions (ga:A—X, gs:B—X).

We define ga by ga(x) = g(x) for all x in A (this makes gathe
restriction of g to A, usually written as

g| AorglA); similarly gg =g | B



* This is easily seen to be a bijection

if g= h. then f(9) = (g | A,g | B) = f(h) = (h | A,h | B)

and if ¢ # h there is some x for which g(z) # h(x), implying g | A # h | A
(if xisin A)org | B# h | B (if z is in B).

(g A,g| B)

B ...




Counting injections

Select k elements from n elements

.permute k selected elements on a
sequence

e (Counting injections from a k-element set to an n-element
set corresponds to counting the number of ways P(n,k)

e we can pick an ordered subset of k of n items without
replacement, also known as picking a k-permutation.

(The k elements of the domain correspond to the k
positions in the order.)



ex

e |njection

Select 3 elements from 5 elements

.permute 3 selected elements on a
sequence




n

P(n, k) = H i =

i—n—k-+1

such k-permutations by the product rule.




Among combinatorialists, the notation (n), (pronounced “n lower-
factorial &) is more common than P(n, k) for n-(n—1)-(n—2)-...-(n—k-+1).
As an extreme casc we have (n), =n-(n—1)-(n—=2)-...-(n—n+1) =
n-(n—1)-(n—2)-...-1=nl s0n! counts the number of permutations

of n.

e injection



e n*counts the number of functions from a k-element set
to an n-element set

(n), counts the number of injections from a k-element set
to an n-element set, and

* n! counts the number of bijections between two n-
element sets

. buection E]




counting two ways

o Let| Sk |denote the number of ways of choosing k elements from a set of n elements, S.
e count the number m of sequences of k elements of S with no repetitions
By picking a size-k subset A and then choosing one of k! ways to order the elements.

This gives m =[S - k!.

* By choosing the first element in one of n ways, the second in one of n—-1, the third in
one of n—-2 ways, and so on until the k-th element, which can be chosen in one of n — k
+ 1 ways.

e This gives m=(n).=n-(n—-1)-(n-2)-...(n—k+1), which can be written as n!/(n — k)!



binomial coefficient

e Sowehavem=|S]: k! =n!/(n - K)!, from which we get

n!

S, | |
TR (= k)

This quantity turns out to be so usetul that it has a special notation:

N\ def n!
/l. N ll.! . (” — ll.)'




Binomial coefficients

e The binomial coefficient “n choose k”, written

n (1), n! | \
= = — : 11.2.1
(ls) k! kl-(n— k) (' ’)

e counts the number of k-element subsets of an n-element
set.




Multinomial coefficients

e |et the multinomial coeffi-cient

Il

ny noy ... N

* be the number of different ways to distribute n items among k bins where the i-th
bin gets exactly n; of the items and we don’t care what order the items appear in
each bin. (Obviously this only makes sense if ny+ny+:--+nyx=n.)



Two ways

 Here are two ways to count the number of permutations of the n-
element set:

1. Pick the first element, then the second, etc., to get n! permutations.
2. Generate a permutation in three steps:

e (a) Pick a partition of the n elements into blocks of size n,, n,, . . .
n,.

e (b) Order the elements of each block.

* (c) Paste the blocks together into a single ordered list.



There are
n

ny ny ... N
ways to pick the partition and
ny! - ne!--ong!

ways to order the elements of all the groups, so we have

n
n! = 'nl‘ '-n.2!~ ~nk!,
nyn2 .. Nk
which we can solve to get
n n!

ny nNo ... Ny nil-nsl - ngl



e arule of the form x is in S if either P(x) or Q(x) is true

use the sum rule (if P and Q are mutually exclusive) or
inclusion- exclusion

e.g. X is a tree of depth at most k if it is either (a) a single
leaf node (provided k > 0) or (b) a root node with two
subtrees of depth at most k-1

T(k) = 1 + T(k = 1)° with T(0) = 0.:

depth k-1




e For objects made out of many small components or
resulting from many small decisions, try to reduce the
description of the object to something previously known

e (a) aword of length k of letters from an alphabet of size n
allowing repetition (there are n* of them, by the product
rule);



e (b)a word of length k not allowing repetition (there are
(n)x of them—or n! if n = Kk);

(c) a subset of k distinct things from a set of size n, where

we don’t care about the order (there are (})) of them)



e The number of games of Tic-Tac-Toe assuming both
players keep playing until the board is filled

each such game can be specified by listing which of the 9
squares are filled in order, giving 9! = 362880 distinct
games.



e only consider games that end when one player wins

probably the easiest way to count such games is to send
a computer off to generate all of them. This gives 255168
possible games and 958 distinct final positions

e How to count this by a program?

e https://archive.ics.uci.edu/ml/datasets/Tic-Tac-
Toe+Endgame



https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

e suppose you win n identical cars on a game show and want to
divide them among your k greedy relatives

it’s OK if some people don’t get a car at all

putting n cars and k — 1 dividers in a line

.n.n . .. S cars 4 dividers
HDEEEOEENEB

* Assume that each car—and each divider—takes one parking space.
Then you have n + k — 1 parking spaces with k — 1 dividers in them
(and cars in the rest). There are exactly ("’+k‘_1) ways to do this.

k—1
~ >> factorial(8)/(factorial(5)*factorial(3))

dans =

56



Divide 5 cars to 4 groups, then assign these four groups to 4 different relatives
e (5,0,0,0) - 4

e (4,1,0,0) - 4*3

¢ (3,2,0,0) - 4*3

e (3,1,1,0) - 4*3

e (2,2,1,0) - 4*3

¢ (2,1,1,1)- 4

e 12*4+8 = 56



e sSuppose you win n identical cars on a game show and
want to divide them among your k greedy relatives

e Then you can just hand out one car to each relative to
start with, leaving n — k cars to divide as in the previous

case. There are <(n—k)+k—1) _ (n—l) ways to do this.

k—1 k—1

factorial(4)/(factorial(1)*factorial(3))
ans =

4



Divide 1 car to 4 relatives

* Divide one card to four groups, then assign these groups
to 4 relatives

e (1,0,0,0) - 4



binomial theorem of
|Isaac Newton

Theorem 11.2.1 (Binomial theorem). For any n € R,

-
, n\ . . ‘
(x 4+ y)" = Z L iy =k, (11.2.2)

=)

provided the swm converges.

A sufficient condition for the sum converging is |x/y| < 1. For the genceral

version of the theorem, (}) is defined as (n), /k!, which works even if n is

not a non-negative integer. The usual prool requires calculus.



n IS a non-negative integer
(x+y)" = i (;‘)’),.ky,ltc.

k=0 \

* The connection between (11.2.3) and counting subsets is
straightforward: expanding (x + y)" using the distributive law
gives 2" terms, each of which is a unique sequence of n x’s
and y’s.

e |f we think of the x’s in each term as labeling a subset of the
n positions in the term, the terms that get added together to
get x*y"*correspond one-to-one to subsets of size k.

e So there are (;) such terms, accounting for the coefficient
on the right-hand side.



Recursive definition

Base cases:

e It £ =0, then there is exactly one zero-element set ot our n-elem

set—it’s the empty set—and we have () = 1.

e It £ > n. then there are no k-element subsets, and we have Yk >
() =
Recursive step: We'll use Pascal’s identity, which says that

n\ [n-— 1 N n—1
L] k k—1



On the left-hand side, we are counting all the k-element
subsets of an n-element set S.

On the right hand side, we are counting two different
collections of sets: the (k — 1)-element and k-element
subsets of an (n — 1)- element set. The trick is to
recognize that we get an (n — 1)-element set S’ from our
original set by removing one of the elements x.



e |f the subset doesn’t contain x, it doesn’t change. So
there is a one- to-one correspondence (the identity
function) between k-subsets of S that don’t contain x and

k-subsets of S'. This bijection accounts for the first term
on the right-hand side.



If the subset does contain x, then we get a (k — 1)-

element subset of S’ when we remove it. Since we can go
back the other way by reinserting x, we get a bijection
between k-subsets of S that contain x and (k — 1)-subsets

of S'. This bijection accounts for the second term on the

right-hand side.
n - [(n— 1 N n—1
kLl k k—1]



e’s the proof of Pascal’s identity:




Vandermonde’s identity

Vandermonde’s identity says that, provided r does not exceed m or 7

(") =5 (")6)



e To pick r elements of an m + n element set, we have to
pick some of them from the first m elements and some
from the second n elements.

we choose k elements from the last n



n m m-+n 2
1= )

1=0

So now consider

m-+n (771 +n
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