
Lecture 3



 function
•  A function symbol looks like a predicate but instead of 

computing a truth value it returns an object. 


• Function symbols may take zero or more arguments. The 
special case of a function symbol with zero arguments is 
called a constant.  


• These are represented using the constant 0 and the 
successor function S, so that we can count 0, S0, SS0, 
SSS0, and so on. 


•  



 equality

•  The equality predicate =, written x = y, is typically 
included as a standard part of predicate logic. 


•



•  The interpretation of x = y is that x and y are the same 
element of the domain. 


• Equality satisfies the reflexivity axiom ∀x : x = x and the 
substitution axiom schema: ∀x∀y : (x = y → (Px ↔ Py)), 
where P is any predicate. This immediately gives a 
substitution rule that says x = y, P (x) ⊢ P (y). 


•



•  ∀x∀y : (x = y → y = x) from the above axioms (this 
property is known as symmetry). 


• Apply substitution to the predicate Pz≡z=x to get        
∀x∀y:(x=y→(x=x↔y=x)). 


• Use reflexivity to rewrite this as                                     
∀x∀y : (x = y → (1 ↔ y = x)), which simplifies to            
∀x∀y : (x = y → y = x). 

•

• substitution axiom schema: 
∀x∀y : (x = y → (Px ↔ Py))




 Uniqueness  

•  The abbreviation ∃!x P(x) says “there exists a unique x 
such that P(x).” This is short for                                                                                       

∃x(P(x) ∧ (∀y : P(y) → x = y)),  


• There is an x for which P (x) is true, and any y for which 
P(y) is true is equal to x.” 


•  



•  There are several equivalent ways to expand ∃!x P(x).


• Applying contraposition to P(y) → x = y gives                   
∃!xP(x) ≡ ∃x(P(x) ∧ (∀y : x    y → ¬P(y))), 
which says that any y that is not x doesn’t satisfy P. 


•

≠



•  De Morgan’s laws to turn this into 
∃!x P(x) ≡ ∃x(P(x) ∧ (¬∃y : x   y ∧ P(y))). 


• This says that there is an x with P(x), but there is no y    x 
with P(y). All of these are just different ways of saying that 
x is the only object that satisfies P. 


•

≠

≠



model 

•  Consider the axiom ¬∃x. This axiom has exactly one 
model (it’s empty).  


• Now consider the axiom ∃!x, which we can expand out to 
∃x∀y y = x.  
This axiom also has exactly one model (with one element).  

•  



 Models  

• A structure is a model of a particular theory (set of statements), 
if each statement in the theory is true in the model. 


• We can enforce exactly k elements with one rather long axiom, 
e.g. for k=3 do 


• In the absence of any special symbols, a structure of 3 
undifferentiated elements is the unique model of this axiom.  

•

∃x1 ∃x2 ∃x3 ∀y : y = x1 ∨ y = x2 ∨ y = x3 ∧ x1 ≠ x2 ∧ x2 ≠ x3 ∧ x3 ≠ x1



•  Suppose we add a predicate P and consider the axiom ∃xPx. 


•  Let P be true of at least one of its elements. 


• If we take a model with two elements a and b, with Pa and 
¬Pb, we see that ∃xPx is not enough to prove ∀xPx, since ∃xP 
x is true in the model but ∀xP x isn’t. 


• Conversely, an empty model satisfies ∀x Px ≡ ¬∃x¬Px but not 
∃xPx.  

•



•  A practical example: The family tree of the kings of 
France is a model of the theory containing the two 
axioms.


•  ∀x∀y∀zParent(x, y) ∧ Parent(y, z) → GrandParent(x, z) 


• ∀x∀yParent(x, y) → ¬Parent(y, x). 


• But this set of axioms could use some work, since it still 
allows for the possibility that there are some x and y for 
which Parent(x, y) and GrandParent(y, x) are both true.  

•
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 Proofs  

•  A proof is a way to derive statements from other statements. 


• It starts with axioms (statements that are assumed in the 
current context always to be true), theorems or lemmas 
(statements that were proved already; the difference between 
a theorem and a lemma is whether it is intended as a final 
result or an intermediate tool), and premises P (assumptions 
we are making for the purpose of seeing what consequences 
they have), and uses inference rules to derive Q. 


•  
 


•



•  The axioms, theorems, and premises are in a sense the 
starting position of a game whose rules are given by the 
inference rules. The goal of the game is to apply the 
inference rules until Q pops out.  


• We refer to anything that isn’t proved in the proof itself 
(i.e., an axiom, theorem, lemma, or premise) as a 
hypothesis; the result Q is the conclusion. 


•



• When a proof exists of Q from some premises P1, P2, . . . , 
we say that Q is deducible or provable from P1, P2, . . . , 
which is written as                                                                                                                                              

P1,P2,... ⊢ Q. 

•  If we can prove Q directly from our inference rules without 
making any assumptions, we may write                                                                  

⊢Q 


•



•  The turnstile symbol ⊢ has the specific meaning that we 
can derive the conclusion Q by applying inference rules to 
the premises. 


• This is not quite the same thing as saying P → Q. 


• If our inference rules are particularly weak, it may be that 
P → Q is true but we can’t prove Q starting with P. 


• Conversely, if our inference rules are too strong (maybe 
they can prove anything, even things that aren’t true) we 
might have P ⊢ Q but P → Q is false. 


•



•  For propositions, most of the time we will use inference 
rules that are just right, meaning that P ⊢ Q implies that P 
→ Q is a tautology, (soundness) and P → Q being a 
tautology implies that P ⊢ Q (completeness). 


• Here the distinction between ⊢ and → is whether we want 
to talk about the existence of a proof (the first case) or 
about the logical relation between two statements (the 
second). 


•



 Inference Rules  

•  Inference rules let us construct valid arguments, which 
have the useful property that if their premises are true, 
their conclusions are also true. 


•



•  The main source of inference rules is tautologies of the 
form P1 ∧ P2 . . . → Q; given such a tautology, there is a 
corresponding inference rule that allows us to assert Q 
once we have P1, P2, . . . . 


• Given an inference rule of this form and a goal Q, we can 
then look for ways to show P1, P2, . . . all hold, either 
because each Pi  is an axiom/theorem/premise or because 
we can prove it from other axioms, theorems, or 
premises. 


•



•  The most important inference rule is modus ponens,，
based on the tautology (p ∧ (p → q)) → q; this lets us, for 
example, write the following famous argument:9 


• 1. If it doesn’t fit, you must acquit. [Axiom] 
2. It doesn’t fit. [Premise] 
3. You must acquit. [Modus ponens applied to 1+2] 


•



• The “addition” rule below is just the result of applying 
modus ponens to p and the tautology p → (p ∨ q) 


•



•  Premises are listed on the left-hand side separated by 
commas, and the conclusion is placed on the right. We 
can then write 


•



•  Modus ponens “the method of affirming” (and its 
reversed cousin modus tollens “the method of denying”) 


•



• It does not necessarily follow that the conclusion is true; it 
could be that one or more of the hypotheses is false: 


•



•  Recall that P ⊢ Q means there is a proof of Q by applying 
inference rules to P , while P → Q says that Q holds 
whenever P does. 


• These are not the same thing: provability (⊢) is outside the 
theory (it’s a statement about whether a proof exists or 
not) while implication (→) is inside (it’s a logical 
connective for making compound propositions). But most 
of the time they mean almost the same thing. 


•



•  



•  This style of inference rule, where we explicitly track what 
assumptions go into a particular result, is known as 
natural deduction. 


• The natural deduction approach was invented by Gentzen 
[Gen35a, Gen35b] as a way to make inference rules more 
closely match actual mathematical proof-writing practice 
than the modus-ponens-only approach that modern 
logicians had been using up to that point.10 


•



 Natural deduction  

•  if we can prove Q using assumptions Γ and P, then we 
can prove P → Q using just Γ 


•  introducing implication 


•  Note that the horizontal line acts like a higher-order 
version of ⊢; it lets us combine one or more proofs into a 
new, bigger proof. 


•



•  eliminating implication that is essentially just modus 
ponens: 


•



 substitution rule  

•  an axiom schema: 
∀x : ∀y : ((x = y ∧ P (x)) → P (y)). 


•



 Natural deduction: introduction 
and elimination rules  



 Natural deduction: introduction 
and elimination rules  



 Inference rules for quantified 
statements  

•  Universal generalization If y is a variable that does not 
appear in Γ, then 


•



•  This says that if we can prove that some property holds 
for a “generic” y, without using any particular properties of 
y, then in fact the property holds for all possible x. 


•  In a written proof, this will usually be signaled by starting 
with some- thing like “Let y be an arbitrary [member of 
some universe]”. For example: Suppose we want to show 
that there is no biggest natural number,i.e. that


     ∀n∈N:∃n′  ∈N:n′ >n. Proof: Let n be any element of N. Let 
n′  = n+1. Then n′  > n. 


•



•  Universal instantiation In the other direction, we have 
∀x : Q(x) ⊢ Q(c). 


• Here we go from a general statement about all possible 
values x to a statement about a particular value. Typical 
use: Given that all humans are mortal, it follows that 
Spocrates is mortal. 


•



Existential generalization 
This is essentially the reverse of universal instantiation: it says that, 
if c is some particular object, we get 

Q(c) ⊢ ∃x : Q(x). 

The idea is that to show that Q(x) holds for at least one x, we can 
point to c as a specific example of an object for which Q holds. 

•



•  Existential instantiation  

• ∃x : Q(x) ⊢ Q(c) for some c, 


where c is a new name that hasn’t previously been used 
(this is similar to the requirement for universal generalization, 
except now the new name is on the right-hand side). 


• The idea here is that we are going to give a name to some 
c that satisfies Q(c), and we know that we can get away 
this because ∃x : Q(x) says that some such thing exists.12 


•



 Proof techniques  



•  Table 2.6 gives techniques for trying to prove A → B for 
particular statements A and B. The techniques are mostly 
classified by the structure of B. Before applying each 
technique, it may help to expand any definitions that 
appear in A or B. 


•
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•  Ex means that x is even 









•  Let’s try this for the proof of ¬E(S0). 


• We are trying to establish that A1, A2, A3 ⊢ ¬E(S0). 
Abbreviating A1, A2, A3  as Γ, the strategy is to show that 


Γ ⊢ E(S0) → Q for some Q with Γ ⊢ ¬Q; 


we can then apply the → E2    rule (aka modus tollens) to get 


Γ ⊢ ¬E(S0). 


•
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