Lecture 3

function

* A function symbol looks like a predicate but instead of
computing a truth value it returns an object.

* Function symbols may take zero or more arguments. The
special case of a function symbol with zero arguments is
called a constant.

* These are represented using the constant O and the

successor function S, so that we can count 0, S0, SSO,
SSS0, and so on.

equality

* The equality predicate =, written x =, Is typically
included as a standard part of predicate logic.

* The interpretation of x =y is that x and y are the same
element of the domain.

e Equality satisfies the reflexivity axiom vx : X = x and the
substitution axiom schema: vxvy: (x =y = (Px «& Py)),

where P is any predicate. This immediately gives a
substitution rule that says x =y, P (x) = P (y).

(

 substitution axiom schema:
VXVy : (X =y = (PXx & Py))

\.

e VXVY:(X=Yy —Yy=X) fromthe above axioms (this
property is known as symmetry).

e Apply substitution to the predicate Pz=z=x to get
VXVY:(X=y = (X=Xy=X)).

e Use reflexivity to rewrite this as
vXvy : (x =y = (1 & y = x)), which simplifies to

VXVY:(X=Yy =V =X).

Uniqueness

e The abbreviation 3lx P(x) says “there exists a unique x
such that P(x).” This is short for

IX(P(x) A (vy : Ply) = x =),

 There is an x for which P (x) is true, and any y for which
P(y) is true is equal to x.”

e There are several equivalent ways to expand 3!x P(x).

* Applying contraposition to P(y) = x =y gives
3IXP(x) = Ix(P(x) A (vy : x#y = =P(y))),
which says that any y that is not x doesn’t satisfy P.

e De Morgan’s laws to turn this into
31X P(X) = ax(P(x) A (—3y : x££y A P(y))).

* This says that there is an x with P(x), but there is no y = x
with P(y). All of these are just different ways of saying that
X is the only object that satisfies P.

model

e (Consider the axiom —-3x. This axiom has exactly one
model (it's empty).

e Now consider the axiom 3!x, which we can expand out to
IXVY Y = X.
This axiom also has exactly one model (with one element).

Models

e A structure is a model of a particular theory (set of statements),
if each statement in the theory is true in the model.

e We can enforce exactly k elements with one rather long axiom,
e.g. for k=3 do

dx; A%, Vy :y=x, VY =X VY =3 AX FX AXy F X3 AX3 F X

e In the absence of any special symbols, a structure of 3
undifferentiated elements is the unigue model of this axiom.

Suppose we add a predicate P and consider the axiom 3axPx.

Let P be true of at least one of its elements.

If we take a model with two elements a and b, with Pa and
-Pb, we see that axPx is not enough to prove vxPXx, since axP

X IS true in the model but vxP x isn’t.

Conversely, an empty model satisfies vx Px = =3x-Px but not
IXPX.

e A practical example: The family tree of the kings of
France is a model of the theory containing the two
axioms.

e vxvyvzParent(x, y) A Parent(y, z) =& GrandParent(x, z)
o vxvyParent(x, y) = —Parent(y, x).

e But this set of axioms could use some work, since it still
allows for the possibility that there are some x and y for
which Parent(x, y) and GrandParent(y, x) are both true.

parent function

-0 =0
ot Gk@

Proofs

e A proofis a way to derive statements from other statements.

* |t starts with axioms (statements that are assumed in the
current context always to be true), theorems or lemmas
(statements that were proved already; the difference between
a theorem and a lemma is whether it is intended as a final
result or an intermediate tool), and premises P (assumptions
we are making for the purpose of seeing what consequences
they have), and uses inference rules to derive Q.

e The axioms, theorems, and premises are in a sense the
starting position of a game whose rules are given by the
inference rules. The goal of the game is to apply the
inference rules until Q pops out.

e We refer to anything that isn’t proved in the proof itself
(i.e., an axiom, theorem, lemma, or premise) as a
hypothesis; the result Q is the conclusion.

e When a proof exists of Q from some premises P,, P,, . ..

we say that Q is deducible or provable from P, P,, . ..
which Is written as

P.P..... - Q.

If we can prove Q directly from our inference rules without
making any assumptions, we may write

—Q

The turnstile symbol - has the specific meaning that we

can derive the conclusion Q by applying inference rules to
the premises.

This is not quite the same thing as saying P — Q.

If our inference rules are particularly weak, it may be that
P — Q is true but we can’t prove Q starting with P.

Conversely, if our inference rules are too strong (maybe
they can prove anything, even things that aren’t true) we

might have P - Q but P = Q is false.

For propositions, most of the time we will use inference
rules that are just right, meaning that P — Q implies that P

— Q is a tautology, (soundness) and P — Q being a
tautology implies that P - Q (completeness).

Here the distinction between ~ and — is whether we want

to talk about the existence of a proof (the first case) or
about the logical relation between two statements (the
second).

Inference Rules

* |nference rules let us construct valid arguments, which
have the useful property that if their premises are true,
their conclusions are also true.

The main source of inference rules is tautologies of the
form P,A P,. .. = Q; given such a tautology, there is a

corresponding inference rule that allows us to assert Q
once we have P, P,,

Given an inference rule of this form and a goal Q, we can
then look for ways to show P, P,, . . . all hold, either
because each P, is an axiom/theorem/premise or because
we can prove it from other axioms, theorems, or
premises.

e The most important inference rule is modus ponens,

based on the tautology (p A (p — g)) — q; this lets us, for
example, write the following famous argument::

e 1.If it doesn’t fit, you must acquit. [Axiom]
2. It doesn’t fit. [Premise]
3. You must acquit. [Modus ponens applied to 1+2]

e The “addition” rule below is just the result of applying
modus ponens to p and the tautology p — (p v Q)

e Premises are listed on the left-hand side separated by
commas, and the conclusion is placed on the right. We
can then write

pkEpVayg. Addition

p/Aqtp. Simplification
p.qHpAqg. Conjunction
p.p—qkq. Modus ponens

=g, p — q = p. Modus tollens
P—>q.q—>rEp—r. Hypothetical syllogism
pVq,—ptq. Disjunctive syllogism

pVqg-pVrEqVr. Resolution

e Modus ponens “the method of affirming” (and its
reversed cousin modus tollens “the method of denying”)

e |t does not necessarily follow that the conclusion is true; it
could be that one or more of the hypotheses is false:

1. If you give a mouse a cookie, he’s going to ask for a glass of milk.
Axiom

2. If he asks for a glass of milk, he will want a straw. [Axiom|
3. You gave a mouse a cookie. [Premise|

4. He asks for a glass of milk. [Modus ponens applied to 1 and 3.]

-l

. He will want a straw. [Modus ponens applied to 2 and 4.]

Will the mouse want a straw? No: Mice can’t ask for glasses of milk, so
Axiom 1 is false.

e Recall that P - Q means there is a proof of Q by applying

inference rules to P, while P = Q says that Q holds
whenever P does.

e These are not the same thing: provability () is outside the
theory (it’s a statement about whether a proof exists or
not) while implication (—) is inside (it’s a logical
connective for making compound propositions). But most
of the time they mean almost the same thing.

Theorem 2.4.1 (Deduction Theorem). If there is a proof of Q from premises
I'Pi. Po,.... P, then there is a proof of PL NPo AN ... NP, —) from T’
alone.

F7P17P27°°°7Pn|_Q

TH(PLAPyA...AP,) — Q.

e This style of inference rule, where we explicitly track what
assumptions go into a particular result, is known as

natural deduction.

 The natural deduction approach was invented by Gentzen
| :] as a way to make inference rules more

closely match actual mathematical proof-writing practice
than the modus-ponens-only approach that modern
logicians had been using up to that point.-

Natural deduction

I''PEQ | |
/
I'-P — Q@ (= 1)

e if we can prove Q using assumptions [and P, then we
can prove P = Q using just [

introducing implication
Note that the horizontal line acts like a higher-order

version of ; it lets us combine one or more proofs into a
new, bigger proof.

e eliminating implication that is essentially just modus
ponens:

I'FP—-¢Q 1I'HP
'~ Q@

(= E)

substitution rule

r =1y, P(x)F P(y).

e an axiom schema:

VX:VvYy:(X=y AP(X)—P(y)).

Natural deduction: introduction
and elimination rules

[+ P
~]
| —
(—FE)
[+ P T
P TFQ AD)
TFPAQ
C'FPAQ
AE
T+ P (NEY)
IT'FPAQ AE)

' Q)

Natural deduction: introduction

and elimination rules
' Q
I'EPVQ
'FPVQ T'F-Q
' P
'-PVQ TI'k-P
I'=Q
I PFQ
P —Q
I'FP—>Q I'FP
[+ Q
I'FP—=0¢ I'F =@
' -/

Inference rules for quantified
statements

 Universal generalization If y is a variable that does not

appear in [, then

'+ P(y)
['FVax: P(x)

e This says that if we can prove that some property holds
for a “generic” y, without using any particular properties of
y, then in fact the property holds for all possible Xx.

e |n a written proof, this will usually be signaled by starting
with some- thing like “Let y be an arbitrary [member of
some universe]”. For example: Suppose we want to show
that there is no biggest natural number,i.e. that

vneN:an’ eN:n’>n. Proof: Let n be any element of N. Let
n’ =n+1. Then n’> n.

e Universal instantiation In the other direction, we have
vX 1 Q(X) - Q(c).

* Here we go from a general statement about all possible
values x to a statement about a particular value. Typical
use: Given that all humans are mortal, it follows that
Spocrates is mortal.

Existential generalization

This 1s essentially the reverse of universal instantiation: it says that,
if ¢ 1s some particular object, we get

Q(c) + Jx : Q(x).

The 1dea 1s that to show that Q(x) holds for at least one x, we can
point to ¢ as a specific example of an object for which Q holds.

e Existential instantiation

e 3Xx: Q(x) - Q(c) for some c,

where c is a new name that hasn’t previously been used
(this is similar to the requirement for universal generalization,
except now the new name is on the right-hand side).

* The idea here is that we are going to give a name to some
c that satisfies Q(c), and we know that we can get away
this because 3x : Q(x) says that some such thing exists.-

Proof techniques

I' = Pe -

\ (VI])
I'-Y2: Pax L
' Vo : Px o
Y E)

I' - Pc (‘ ’
I'+ Pe R
I'F3dx: Pax (31)
I'Fdz: Px .
L L (3E)

I'- Pe

Table 2.5: Natural deduction: introduction and elimination rules for quan-
tificrs. For VI and JdE, ¢ is a ncw symbol that docs not appcar in P or

I

 Table 2.6 gives techniques for trying to prove A — B for
particular statements A and B. The techniques are mostly

classified by the structure of B. Before applying each
technique, it may help to expand any definitions that

appear in A or B.

Strategy

When

Assume

Conclude What to do/why it

works

Direct proof

Contraposition

Iry it first

B=-Q

’
2!
b

I

Apply inference rules
to work forward from A
and backward from B:
when you meet in the
middle, pretend that
yvou were working for-
ward from A all along.
Apply any other tech-
nique to show -8B —
- A and then apply
the contraposition rule.
Sometimes called an in-
direct proof although
the term indirect proof
is often used instead for
proofs by contradiction
(sce below).

Construction

Counterexample

B = dxP(x)

B = -VazP(x)

P(¢) for
some
specific
object c.
-P(c)
for some
specific
object c.

Pick a likely-looking ¢
and prove that P(c¢)
holds.

Pick a likelv-looking ¢
and show that /°(¢)
holds. This is identical
to a proofl by construc-
tion, except that we
are proving de—-P(x).
which is equivalent to

-V P(x).

Choose

B = Va(P(z) - Q(z))

A, P(c),
where

c 1S
chosen
arbitrar-
ily.

Choose some ¢ and
assume A and P(c).
Prove Q(¢). Note: ¢
is a placcholder here.
If P(c) is “¢ is even”
vou can write “Let ¢
be even” but you can’t
write “Let ¢ = 127,
since in the latter case
you arc assuming cxtra
facts about c.

Instantiation A =VzP(x) A B Pick some particular
¢ and prove that
P’(¢) —B. Here you
can get away with
saying “Let ¢ = 127
(If ¢ = 12 makes B
true).
Elimination B=0CvVD AN-C D The reason this works
is that AN -C — D
is equivalent to —(A A
—D=-Av(CV
D=A— (CvD). Of
course, it works equally
well if you start with
A A~ and prove (.

Case analysis

Induction

A=CVD

B =Vr e NP(x)

C.D

Here you write two sep-
arate proofs: one that
assumes C' and proves
B, and one that as-
sumes [J and proves B.
A special case is when
D = -=C'". You can also
consider more cases, as
long as A implies at
least one of the cases
holds.

If £(0) holds, and P(x)
implies P(x + 1) for
all z. then for any spe-
cific natural number n
we can consider con-
structing a sequence of
proofs P(0) — P(1) —
P(2) —» ... > P(n).
(This is actually a defin-
ing property of the nat-
ural numbers.)

e EX means that x Is even

\ \

Ay Ve :Ex < (x =0V (Jy: EyAnx = SSy))
Ay Va0 # Sz.
Az NaVy : Se = Sy — x = .

Here A, is the definition of Fx and A, and A, are general axioms about
S that we are throwing in because we will need them in some of our proofs.

Theorem 2.6.1. All of the following statements are true:
1. EO.

- F(S50).

E(SS50).

- F(5550).

E(55550).

1. EO.
2. —E(S0).
3. E(SS0).

Proof. 1. Axiom A; says that x is even if it is 0.

2. Suppose E(S0) holds. Then either SO = 0 or S0 = SSy for some
y such that Fy holds. The first case contradicts As: in the second
case, applying Az gives that S0 = 5SSy implies 0 = Sy, which again
contradicts A-. So in either case we arrive at a contradiction, and our

original assumption that E'(S0) is

(This is an example of an indirect

true does not hold.

hroof.)

3. From A; we have that E(SS0) ho!
Fvy and S50 = SSy. Let y = 0.

ds if there exists some y such that

4. ~E(SSS0).
5. E(SSSS0).

4. We have previously established —F(50). We also know that SSS0 # 0,
so F(5550) is true if and only if S50 = SSy for some y with Ey.
Applying A, twice gives SSS0 = SSy iff SO = y. But we already
showed —F'(50), so ~FE(5550).

5. Since F(S550) and SSSS0 = 550, E(SSSS0).

e |et’s try this for the proof of =E(S0).

e We are trying to establish that A+, Az, As = =E(SO0).
Abbreviating A+, A2, Asas [, the strategy is to show that

[+ E(S0) = Q for some Q with I - =Q;

we can then apply the — E» rule (aka modus tollens) to get

[+~ =E(SO0).

I'FP =0 I'F-Q
I'F =P

(— E3)

1. T E(S0) < (SO=0Vv3dy: (EyAS0O=S8Sy)). (VE applied to A;.)

2. ' E(SO0) = (SO0=0V dy: (EyASO=S5Sy)). (Expand < and use
one of the A elimination rules.)

3. IVE(SO)FSO=0Vvdy: (EynS0O=SSy). (— F).

Ay Ve:Ex < (e =0V (Jdy: Eynz = SSy))

I'=Var: Px
I'= Pec (VE)
Ik 220
Fll:ng (ANEs)
T-P—>Q TFP > B)

I'-@Q

E(SO)FSO=0Vvdy: (EynS0=SSy). (— E).
I E(SO) F (S0 =0). (Apply VE to As.)

E(SO0)F dy: (EyAS0= SSy). (Combine last two steps using VFE|.)
(

S0) = EzN S0 =S85z, (This is dF. In the condensed proof we
didn’t rename y, but calling it z here makes it a little more obvious
that we are fixing some particular constant.)

Ay Vo :0# Sz,
I'EVr: Px
I'= Pc (VE)
I'-EPVQE 1I'H-P
VvV FE
FEo (VE?2)
' da: Pax (3E)

I'= Pe

8. I',F(S50)F S0= 552« 0= 52 (Apply VE to Aj).
9. I' E(S0) = S0 =55z — 0= Sz. (Another expansion plus AFE).

10. I' E(SO0) =0 = 8Sz. (Apply — Ej to S0 =55z and S0 = 55z — 0 =
Sz.)

Az NaVy : Se = Sy —x=y.
I'EVar: Px

E
I'- Pc (V)
I'FP—Q IFP
FE
[Q (= E1)

10. I', E(SO) -0 = Sz. (Apply — E7 to SO =55z and S0 = 55z — (0 =
Sz.)

11. ' E(SO0) - 0=25z. (—1.)
12. ' =(0= Sz). (VE and As.)
13. ' =FE(S0). (— Es.)

Ay Va0 # Sx.
I'EVYr: Px
I' = Pc

TFP—=Q TF-Q
[F-P

1 heorem 2.0.2. For all x, ij x 18 even, DOS5T 1S €VEN.

Proof. Let x be even. Then SSx is even (Axiom A;), and so SS(SSz) =

SSSSax is also even.

Written out using natural-deduction inference rules (with some of the
more boring steps omitted), the proof would look like this:

L.
2.

I'ExtF (Jy: EyANSSx=5Sy) — E(SSx). (Axiom Ay, VE, VE;.)
[,Ext FEux.

[',Ext SSx = SSx. (Reflexivity of =.)

I',Ext Ex ANSSx = S5Sx. (Al applied to previous two steps.)
I'Ext dy: Ey A SSy =58z, (Let y = x.)

I, EFx - E(SSz). (Modus ponens!)

I, Ere = E(SSSSz). (Do it all again to show E(SSz) — E(SSSSx).

This is the boring part we promised to omit.)

'+ Bx — E(SSSSz). (— I.)

. I'EVa: Ex — E(SSSSx). (V).

I, Ex b (Jy: EyANSSe = 5SSy) —» E(SSx). (Axiom Ay, VE, VE].)
2. I'.Fx+ FEu.
3. I'Ex b SSx = SSx. (Reflexivity of =.)

Al Ve Fr < (x =0V (Jdy: EyNx = SSy))
I'EVa: Px
I'= Pe

r'FPvQ I'F-Q
TFP

(VE)

(VEY)

) |

=]

I ExbE (Jy: EyASSe = SSy) — E(SSx). (Axiom Ay, VE, VE].)

I'.Frt FEax.
[',Ex b SSx = SSz. (Reflexivity of =.)

4. I'Ex b Ex ANSSx = SSx. (Al applied to previous two steps.)

I Ex b dy EyASSy =85Sz, (Let y = x.)

I, EFx+ E(SSx). (Modus ponens!)

I, Ex = E(SSSSz). (Do it all again to show F(SSxz) — E(SSSSx).

This is the boring part we promised to omit.)

T+ Ex— E(S5858z). (— 1)

['tVe: Ex— E(SSSSx). (VI).

