
Lecture 3

 function
• A function symbol looks like a predicate but instead of

computing a truth value it returns an object.

• Function symbols may take zero or more arguments. The
special case of a function symbol with zero arguments is
called a constant.

• These are represented using the constant 0 and the
successor function S, so that we can count 0, S0, SS0,
SSS0, and so on.

•

 equality

• The equality predicate =, written x = y, is typically
included as a standard part of predicate logic.

•

• The interpretation of x = y is that x and y are the same
element of the domain.

• Equality satisfies the reflexivity axiom ∀x : x = x and the
substitution axiom schema: ∀x∀y : (x = y → (Px ↔ Py)),
where P is any predicate. This immediately gives a
substitution rule that says x = y, P (x) ⊢ P (y).

•

• ∀x∀y : (x = y → y = x) from the above axioms (this
property is known as symmetry).

• Apply substitution to the predicate Pz≡z=x to get
∀x∀y:(x=y→(x=x↔y=x)).

• Use reflexivity to rewrite this as
∀x∀y : (x = y → (1 ↔ y = x)), which simplifies to
∀x∀y : (x = y → y = x). 

•

• substitution axiom schema:
∀x∀y : (x = y → (Px ↔ Py))

 Uniqueness

• The abbreviation ∃!x P(x) says “there exists a unique x
such that P(x).” This is short for

∃x(P(x) ∧ (∀y : P(y) → x = y)),

• There is an x for which P (x) is true, and any y for which
P(y) is true is equal to x.”

•

• There are several equivalent ways to expand ∃!x P(x).

• Applying contraposition to P(y) → x = y gives
∃!xP(x) ≡ ∃x(P(x) ∧ (∀y : x y → ¬P(y))), 
which says that any y that is not x doesn’t satisfy P.

•

≠

• De Morgan’s laws to turn this into 
∃!x P(x) ≡ ∃x(P(x) ∧ (¬∃y : x y ∧ P(y))).

• This says that there is an x with P(x), but there is no y x
with P(y). All of these are just different ways of saying that
x is the only object that satisfies P.

•

≠

≠

model

• Consider the axiom ¬∃x. This axiom has exactly one
model (it’s empty).

• Now consider the axiom ∃!x, which we can expand out to
∃x∀y y = x.  
This axiom also has exactly one model (with one element).  

•

 Models

• A structure is a model of a particular theory (set of statements),
if each statement in the theory is true in the model.

• We can enforce exactly k elements with one rather long axiom,
e.g. for k=3 do

• In the absence of any special symbols, a structure of 3
undifferentiated elements is the unique model of this axiom.  

•

∃x1 ∃x2 ∃x3 ∀y : y = x1 ∨ y = x2 ∨ y = x3 ∧ x1 ≠ x2 ∧ x2 ≠ x3 ∧ x3 ≠ x1

• Suppose we add a predicate P and consider the axiom ∃xPx.

• Let P be true of at least one of its elements.

• If we take a model with two elements a and b, with Pa and
¬Pb, we see that ∃xPx is not enough to prove ∀xPx, since ∃xP
x is true in the model but ∀xP x isn’t.

• Conversely, an empty model satisfies ∀x Px ≡ ¬∃x¬Px but not
∃xPx.  

•

• A practical example: The family tree of the kings of
France is a model of the theory containing the two
axioms.

• ∀x∀y∀zParent(x, y) ∧ Parent(y, z) → GrandParent(x, z)

• ∀x∀yParent(x, y) → ¬Parent(y, x).

• But this set of axioms could use some work, since it still
allows for the possibility that there are some x and y for
which Parent(x, y) and GrandParent(y, x) are both true.  

•

parent function

yx yx

y

x z

 Proofs  

• A proof is a way to derive statements from other statements.

• It starts with axioms (statements that are assumed in the
current context always to be true), theorems or lemmas
(statements that were proved already; the difference between
a theorem and a lemma is whether it is intended as a final
result or an intermediate tool), and premises P (assumptions
we are making for the purpose of seeing what consequences
they have), and uses inference rules to derive Q.

•  

•

• The axioms, theorems, and premises are in a sense the
starting position of a game whose rules are given by the
inference rules. The goal of the game is to apply the
inference rules until Q pops out.

• We refer to anything that isn’t proved in the proof itself
(i.e., an axiom, theorem, lemma, or premise) as a
hypothesis; the result Q is the conclusion.

•

• When a proof exists of Q from some premises P1, P2, . . . ,
we say that Q is deducible or provable from P1, P2, . . . ,
which is written as

P1,P2,... ⊢ Q. 

• If we can prove Q directly from our inference rules without
making any assumptions, we may write

⊢Q

•

• The turnstile symbol ⊢ has the specific meaning that we
can derive the conclusion Q by applying inference rules to
the premises.

• This is not quite the same thing as saying P → Q.

• If our inference rules are particularly weak, it may be that
P → Q is true but we can’t prove Q starting with P.

• Conversely, if our inference rules are too strong (maybe
they can prove anything, even things that aren’t true) we
might have P ⊢ Q but P → Q is false.

•

• For propositions, most of the time we will use inference
rules that are just right, meaning that P ⊢ Q implies that P
→ Q is a tautology, (soundness) and P → Q being a
tautology implies that P ⊢ Q (completeness).

• Here the distinction between ⊢ and → is whether we want
to talk about the existence of a proof (the first case) or
about the logical relation between two statements (the
second).

•

 Inference Rules

• Inference rules let us construct valid arguments, which
have the useful property that if their premises are true,
their conclusions are also true.

•

• The main source of inference rules is tautologies of the
form P1 ∧ P2 . . . → Q; given such a tautology, there is a
corresponding inference rule that allows us to assert Q
once we have P1, P2,

• Given an inference rule of this form and a goal Q, we can
then look for ways to show P1, P2, . . . all hold, either
because each Pi is an axiom/theorem/premise or because
we can prove it from other axioms, theorems, or
premises.

•

• The most important inference rule is modus ponens,，
based on the tautology (p ∧ (p → q)) → q; this lets us, for
example, write the following famous argument:9

• 1. If it doesn’t fit, you must acquit. [Axiom] 
2. It doesn’t fit. [Premise] 
3. You must acquit. [Modus ponens applied to 1+2]

•

• The “addition” rule below is just the result of applying
modus ponens to p and the tautology p → (p ∨ q)

•

• Premises are listed on the left-hand side separated by
commas, and the conclusion is placed on the right. We
can then write

•

• Modus ponens “the method of affirming” (and its
reversed cousin modus tollens “the method of denying”)

•

• It does not necessarily follow that the conclusion is true; it
could be that one or more of the hypotheses is false:

•

• Recall that P ⊢ Q means there is a proof of Q by applying
inference rules to P , while P → Q says that Q holds
whenever P does.

• These are not the same thing: provability (⊢) is outside the
theory (it’s a statement about whether a proof exists or
not) while implication (→) is inside (it’s a logical
connective for making compound propositions). But most
of the time they mean almost the same thing.

•

•

• This style of inference rule, where we explicitly track what
assumptions go into a particular result, is known as
natural deduction.

• The natural deduction approach was invented by Gentzen
[Gen35a, Gen35b] as a way to make inference rules more
closely match actual mathematical proof-writing practice
than the modus-ponens-only approach that modern
logicians had been using up to that point.10

•

 Natural deduction

• if we can prove Q using assumptions Γ and P, then we
can prove P → Q using just Γ

• introducing implication

• Note that the horizontal line acts like a higher-order
version of ⊢; it lets us combine one or more proofs into a
new, bigger proof.

•

• eliminating implication that is essentially just modus
ponens:

•

 substitution rule

• an axiom schema: 
∀x : ∀y : ((x = y ∧ P (x)) → P (y)).

•

 Natural deduction: introduction
and elimination rules

 Natural deduction: introduction
and elimination rules

 Inference rules for quantified
statements

• Universal generalization If y is a variable that does not
appear in Γ, then

•

• This says that if we can prove that some property holds
for a “generic” y, without using any particular properties of
y, then in fact the property holds for all possible x.

• In a written proof, this will usually be signaled by starting
with some- thing like “Let y be an arbitrary [member of
some universe]”. For example: Suppose we want to show
that there is no biggest natural number,i.e. that

 ∀n∈N:∃n′ ∈N:n′ >n. Proof: Let n be any element of N. Let
n′ = n+1. Then n′ > n.

•

• Universal instantiation In the other direction, we have
∀x : Q(x) ⊢ Q(c).

• Here we go from a general statement about all possible
values x to a statement about a particular value. Typical
use: Given that all humans are mortal, it follows that
Spocrates is mortal.

•

Existential generalization
This is essentially the reverse of universal instantiation: it says that,
if c is some particular object, we get

Q(c) ⊢ ∃x : Q(x).

The idea is that to show that Q(x) holds for at least one x, we can
point to c as a specific example of an object for which Q holds.

•

• Existential instantiation

• ∃x : Q(x) ⊢ Q(c) for some c,

where c is a new name that hasn’t previously been used
(this is similar to the requirement for universal generalization,
except now the new name is on the right-hand side).

• The idea here is that we are going to give a name to some
c that satisfies Q(c), and we know that we can get away
this because ∃x : Q(x) says that some such thing exists.12

•

 Proof techniques

• Table 2.6 gives techniques for trying to prove A → B for
particular statements A and B. The techniques are mostly
classified by the structure of B. Before applying each
technique, it may help to expand any definitions that
appear in A or B.

•

v

∃

• Ex means that x is even

• Let’s try this for the proof of ¬E(S0).

• We are trying to establish that A1, A2, A3 ⊢ ¬E(S0).
Abbreviating A1, A2, A3 as Γ, the strategy is to show that

Γ ⊢ E(S0) → Q for some Q with Γ ⊢ ¬Q;

we can then apply the → E2 rule (aka modus tollens) to get

Γ ⊢ ¬E(S0).

•

↔

• SSx

