Lecture 3

function

- A function symbol looks like a predicate but instead of computing a truth value it returns an object.
- Function symbols may take zero or more arguments. The special case of a function symbol with zero arguments is called a constant.
- These are represented using the constant 0 and the successor function S, so that we can count 0, S0, SS0, SSS0, and so on.

equality

• The **equality** predicate =, written x = y, is typically included as a standard part of predicate logic.

٠

- The interpretation of x = y is that x and y are the same element of the domain.
- Equality satisfies the reflexivity axiom ∀x : x = x and the substitution axiom schema: ∀x∀y : (x = y → (Px ↔ Py)),

where P is any predicate. This immediately gives a **substitution rule** that says x = y, P (x) \vdash P (y).

- substitution axiom schema:
 ∀x∀y : (x = y → (Px ↔ Py))
- $\forall x \forall y : (x = y \rightarrow y = x)$ from the above axioms (this property is known as **symmetry**).
- Apply substitution to the predicate Pz=z=x to get ∀x∀y:(x=y→(x=x↔y=x)).
- Use reflexivity to rewrite this as
 ∀x∀y : (x = y → (1 ↔ y = x)), which simplifies to
 ∀x∀y : (x = y → y = x).

Uniqueness

- The abbreviation ∃!x P(x) says "there exists a *unique* x such that P(x)." This is short for ∃x(P(x) ∧ (∀y : P(y) → x = y)),
- There is an x for which P (x) is true, and any y for which P(y) is true is equal to x."

- There are several equivalent ways to expand $\exists x P(x)$.
- Applying contraposition to P(y) → x = y gives ∃!xP(x) = ∃x(P(x) ∧ (∀y : x ≠ y → ¬P(y))), which says that any y that is not x doesn't satisfy P.

- De Morgan's laws to turn this into $\exists x P(x) \equiv \exists x(P(x) \land (\neg \exists y : x \neq y \land P(y))).$
- This says that there is an x with P(x), but there is no y ≠ x with P(y). All of these are just different ways of saying that x is the only object that satisfies P.

model

- Consider the axiom ¬∃x. This axiom has exactly one model (it's empty).
- Now consider the axiom ∃!x, which we can expand out to ∃x∀y y = x.
 This axiom also has exactly one model (with one element).

Models

- A structure is a **model** of a particular **theory** (set of statements), if each statement in the theory is true in the model.
- We can enforce exactly k elements with one rather long axiom, e.g. for k=3 do

 $\exists x_1 \exists x_2 \exists x_3 \forall y : y = x_1 \lor y = x_2 \lor y = x_3 \land x_1 \neq x_2 \land x_2 \neq x_3 \land x_3 \neq x_1$

• In the absence of any special symbols, a structure of 3 undifferentiated elements is the unique model of this axiom.

- Suppose we add a predicate P and consider the axiom $\exists x P x$.
- Let P be true of at least one of its elements.
- If we take a model with two elements a and b, with Pa and ¬Pb, we see that ∃xPx is not enough to prove ∀xPx, since ∃xP x is true in the model but ∀xP x isn't.
- Conversely, an empty model satisfies ∀x Px = ¬∃x¬Px but not ∃xPx.

- A practical example: The family tree of the kings of France is a model of the theory containing the two axioms.
 - $\forall x \forall y \forall z Parent(x, y) \land Parent(y, z) \rightarrow GrandParent(x, z)$
 - $\forall x \forall y Parent(x, y) \rightarrow \neg Parent(y, x)$.
- But this set of axioms could use some work, since it still allows for the possibility that there are some x and y for which Parent(x, y) and GrandParent(y, x) are both true.

parent function

Proofs

- A proof is a way to derive statements from other statements.
- It starts with axioms (statements that are assumed in the current context always to be true), theorems or lemmas (statements that were proved already; the difference between a theorem and a lemma is whether it is intended as a final result or an intermediate tool), and premises P (assumptions we are making for the purpose of seeing what consequences they have), and uses inference rules to derive Q.

- The axioms, theorems, and premises are in a sense the starting position of a game whose rules are given by the inference rules. The goal of the game is to apply the inference rules until Q pops out.
- We refer to anything that isn't proved in the proof itself (i.e., an axiom, theorem, lemma, or premise) as a hypothesis; the result Q is the conclusion.

- When a proof exists of Q from some premises P₁, P₂, ..., we say that Q is **deducible** or **provable** from P₁, P₂, ..., which is written as P₁, P₂,...⊢ Q.
 - If we can prove Q directly from our inference rules without making any assumptions, we may write \vdash Q

•

- The turnstile symbol ⊢ has the specific meaning that we can derive the conclusion Q by applying inference rules to the premises.
- This is not quite the same thing as saying $P \rightarrow Q$.
- If our inference rules are particularly weak, it may be that
 P → Q is true but we can't prove Q starting with P.
- Conversely, if our inference rules are too strong (maybe they can prove anything, even things that aren't true) we might have P ⊢ Q but P → Q is false.

- For propositions, most of the time we will use inference rules that are just right, meaning that P ⊢ Q implies that P → Q is a tautology, (soundness) and P → Q being a tautology implies that P ⊢ Q (completeness).
- Here the distinction between ⊢ and → is whether we want to talk about the existence of a proof (the first case) or about the logical relation between two statements (the second).

Inference Rules

 Inference rules let us construct valid arguments, which have the useful property that if their premises are true, their conclusions are also true.

- The main source of inference rules is tautologies of the form P₁ ∧ P₂... → Q; given such a tautology, there is a corresponding inference rule that allows us to assert Q once we have P₁, P₂,
- Given an inference rule of this form and a goal Q, we can then look for ways to show P₁, P₂, . . . all hold, either because each P₁ is an axiom/theorem/premise or because we can prove it from other axioms, theorems, or premises.

- The most important inference rule is modus ponens, ,
 based on the tautology (p ∧ (p → q)) → q; this lets us, for example, write the following famous argument:₉
- 1. If it doesn't fit, you must acquit. [Axiom]
 2. It doesn't fit. [Premise]
 3. You must acquit. [Modus ponens applied to 1+2]

 The "addition" rule below is just the result of applying modus ponens to p and the tautology p → (p ∨ q) Premises are listed on the left-hand side separated by commas, and the conclusion is placed on the right. We can then write

Addition $p \vdash p \lor q$. $p \wedge q \vdash p$. Simplification $p,q \vdash p \land q.$ Conjunction $p, p \rightarrow q \vdash q$. Modus ponens Modus tollens $\neg q, p \rightarrow q \vdash \neg p.$ $p \to q, q \to r \vdash p \to r.$ Hypothetical syllogism Disjunctive syllogism $p \lor q, \neg p \vdash q.$ $p \lor q, \neg p \lor r \vdash q \lor r.$ Resolution Modus ponens "the method of affirming" (and its reversed cousin modus tollens "the method of denying")

- It does not necessarily follow that the conclusion is true; it could be that one or more of the hypotheses is false:
 - 1. If you give a mouse a cookie, he's going to ask for a glass of milk. [Axiom]
 - 2. If he asks for a glass of milk, he will want a straw. [Axiom]
 - 3. You gave a mouse a cookie. [Premise]
 - 4. He asks for a glass of milk. [Modus ponens applied to 1 and 3.]
 - 5. He will want a straw. [Modus ponens applied to 2 and 4.]

Will the mouse want a straw? No: Mice can't ask for glasses of milk, so Axiom 1 is false.

- Recall that P ⊢ Q means there is a proof of Q by applying inference rules to P , while P → Q says that Q holds whenever P does.
- These are not the same thing: provability (⊢) is outside the theory (it's a statement about whether a proof exists or not) while implication (→) is inside (it's a logical connective for making compound propositions). But most of the time they mean almost the same thing.

Theorem 2.4.1 (Deduction Theorem). If there is a proof of Q from premises $\Gamma, P_1, P_2, \ldots, P_n$, then there is a proof of $P_1 \wedge P_2 \wedge \ldots \wedge P_n \rightarrow Q$ from Γ alone.

 $\Gamma, P_1, P_2, \ldots, P_n \vdash Q$

 $\Gamma \vdash (P_1 \land P_2 \land \ldots \land P_n) \to Q.$

- This style of inference rule, where we explicitly track what assumptions go into a particular result, is known as **natural deduction**.
- The natural deduction approach was invented by Gentzen [Gen35a, Gen35b] as a way to make inference rules more closely match actual mathematical proof-writing practice than the modus-ponens-only approach that modern logicians had been using up to that point.¹⁰

Natural deduction $\Gamma, P \vdash Q$ $\Gamma \vdash P \rightarrow Q$ $(\rightarrow I)$

- if we can prove Q using assumptions Γ and P, then we can prove P \rightarrow Q using just Γ
- · introducing implication
- Note that the horizontal line acts like a higher-order version of ⊢; it lets us combine one or more proofs into a new, bigger proof.

 eliminating implication that is essentially just modus ponens:

 $(\rightarrow E)$

$$\frac{\Gamma \vdash P \to Q \quad \Gamma \vdash P}{\Gamma \vdash Q}$$

•

substitution rule

$$x = y, P(x) \vdash P(y).$$

• an axiom schema: $\forall x : \forall y : ((x = y \land P(x)) \rightarrow P(y)).$

•

Natural deduction: introduction and elimination rules

Natural deduction: introduction and elimination rules

 $\Gamma \vdash Q$ $(\vee I_2)$ $\overline{\Gamma \vdash P \lor Q}$ $\Gamma \vdash P \lor Q \quad \Gamma \vdash \neg Q$ $(\vee E_1)$ $\Gamma \vdash P$ $\Gamma \vdash P \lor Q \quad \Gamma \vdash \neg P$ $(\vee E_2)$ $\Gamma \vdash Q$ $\Gamma, P \vdash Q$ $(\rightarrow I)$ $\overline{\Gamma \vdash P \to Q}$ $\Gamma \vdash P \rightarrow Q \quad \Gamma \vdash P$ $(\rightarrow E_1)$ $\Gamma \vdash Q$ $\Gamma \vdash P \to Q \quad \Gamma \vdash \neg Q$ $(\rightarrow E_2)$ $\Gamma \vdash \neg P$

Inference rules for quantified statements

 Universal generalization If y is a variable that does not appear in Γ, then

$$\frac{\Gamma \vdash P(y)}{\Gamma \vdash \forall x : P(x)}$$

- This says that if we can prove that some property holds for a "generic" y, without using any particular properties of y, then in fact the property holds for all possible x.
- In a written proof, this will usually be signaled by starting with some- thing like "Let y be an arbitrary [member of some universe]". For example: Suppose we want to show that there is no biggest natural number, i.e. that

 $\forall n \in N: \exists n' \in N: n' > n$. Proof: Let n be any element of N. Let n' = n+1. Then n' > n.

- Universal instantiation In the other direction, we have $\forall x : Q(x) \vdash Q(c)$.
- Here we go from a general statement about all possible values x to a statement about a particular value. Typical use: Given that all humans are mortal, it follows that Spocrates is mortal.

Existential generalization

This is essentially the reverse of universal instantiation: it says that, if c is some particular object, we get

 $Q(c) \vdash \exists x : Q(x).$

The idea is that to show that Q(x) holds for at least one x, we can point to c as a specific example of an object for which Q holds.

 ${ \bullet }$

- Existential instantiation
- $\exists x : Q(x) \vdash Q(c)$ for some c,

where c is a new name that hasn't previously been used (this is similar to the requirement for universal generalization, except now the new name is on the right-hand side).

 The idea here is that we are going to give a name to some c that satisfies Q(c), and we know that we can get away this because ∃x : Q(x) says that some such thing exists.¹²

Proof techniques

$$\frac{\Gamma \vdash Pc}{\Gamma \vdash \forall x : Px} \qquad (\forall I)$$

$$\frac{\Gamma \vdash \forall x : Px}{\Gamma \vdash Pc} \qquad (\forall E)$$

$$\frac{\Gamma \vdash Pc}{\Gamma \vdash \exists x : Px} \qquad (\exists I)$$

$$\frac{\Gamma \vdash \exists x : Px}{\Gamma \vdash Pc} \qquad (\exists E)$$

Table 2.5: Natural deduction: introduction and elimination rules for quantifiers. For $\forall I$ and $\exists E, c$ is a new symbol that does not appear in P or Γ .

 Table 2.6 gives techniques for trying to prove A → B for particular statements A and B. The techniques are mostly classified by the structure of B. Before applying each technique, it may help to expand any definitions that appear in A or B.

Strategy	When	Assume	Conclude	What to do/why it works
Direct proof	Try it first	A	B	Apply inference rules to work forward from A and backward from B ; when you meet in the middle, pretend that you were working for- ward from A all along.
Contraposition	$B = \neg Q$	$\neg B$	$\neg A$	Apply any other tech- nique to show $\neg B \rightarrow$ $\neg A$ and then apply the contraposition rule. Sometimes called an <i>in-</i> <i>direct proof</i> although the term <i>indirect proof</i> is often used instead for proofs by contradiction (see below).

Construction	$B = \exists x P(x)$	A
Counterevample	$B = \neg \forall x P(x)$	Δ
Counterexample	$D = \operatorname{var}(x)$	Л

P(c) for some specific object c. $\neg P(c)$ for some

specific

object c.

Pick a likely-looking cand prove that P(c)holds.

Pick a likely-looking cand show that $\neg P(c)$ holds. This is identical to a proof by construction, except that we are proving $\exists x \neg P(x)$, which is equivalent to $\neg \forall x P(x)$. Choose

$$B = \forall x (P(x) \to Q(x))$$

$$A, P(c), Q(c)$$

where
 c is
chosen
arbitrar-
ily.

Choose some c and assume A and P(c). Prove Q(c). Note: cis a placeholder here. If P(c) is "c is even" you can write "Let cbe even" but you can't write "Let c = 12", since in the latter case you are assuming extra facts about c.

Elimination

$$B = C \lor D$$

$$A \land \neg C = D$$

B

V

A

Pick some particular c and prove that $P(c) \rightarrow B$. Here you can get away with saying "Let c = 12." (If c = 12 makes Btrue). The reason this works is that $A \wedge \neg C \rightarrow D$ is equivalent to $\neg (A \land$ $\neg C$) $\rightarrow D \equiv \neg A \lor C \lor$ $D \equiv A \rightarrow (C \lor D)$. Of course, it works equally well if you start with

 $A \wedge \neg D$ and prove C.

Case analysis	$A = C \lor D$	C, D	B	Here you write two sep- arate proofs: one that assumes C and proves B, and one that as- sumes D and proves B . A special case is when $D = \neg C$. You can also consider more cases, as long as A implies at least one of the cases holds.
Induction	$B = \forall x \in \mathbb{N}P(x)$	A	P(0) and $\forall x \in \mathbb{N} :$ $(P(x) \rightarrow$ P(x + 1)).	If $P(0)$ holds, and $P(x)$ implies $P(x + 1)$ for all x , then for any spe- cific natural number n we can consider con- structing a sequence of proofs $P(0) \rightarrow P(1) \rightarrow$ $P(2) \rightarrow \ldots \rightarrow P(n)$. (This is actually a defin- ing property of the nat-

ural numbers.)

• Ex means that x is even

$$A_1 : \forall x : Ex \leftrightarrow (x = 0 \lor (\exists y : Ey \land x = SSy))$$
$$A_2 : \forall x : 0 \neq Sx.$$
$$A_3 : \forall x \forall y : Sx = Sy \rightarrow x = y.$$

Here A_1 is the definition of Ex and A_2 and A_3 are general axioms about S that we are throwing in because we will need them in some of our proofs.

Theorem 2.6.1. All of the following statements are true:

- 1. E0.
- 2. $\neg E(S0)$.
- 3. E(SS0).
- 4. $\neg E(SSS0)$.
- 5. E(SSSS0).

1. E0.

- 2. $\neg E(S0)$.
- 3. E(SS0).

Proof. 1. Axiom A_1 says that x is even if it is 0.

2. Suppose E(S0) holds. Then either S0 = 0 or S0 = SSy for some y such that Ey holds. The first case contradicts A_2 ; in the second case, applying A_3 gives that S0 = SSy implies 0 = Sy, which again contradicts A_2 . So in either case we arrive at a contradiction, and our original assumption that E(S0) is true does not hold.

(This is an example of an indirect proof.)

3. From A_1 we have that E(SS0) holds if there exists some y such that Ey and SS0 = SSy. Let y = 0.

- 4. $\neg E(SSS0)$.
- 5. E(SSSS0).

- 4. We have previously established $\neg E(S0)$. We also know that $SSS0 \neq 0$, so E(SSS0) is true if and only if SSS0 = SSy for some y with Ey. Applying A_2 twice gives SSS0 = SSy iff S0 = y. But we already showed $\neg E(S0)$, so $\neg E(SSS0)$.
- 5. Since E(SS0) and SSSS0 = SS0, E(SSSS0).

- Let's try this for the proof of $\neg E(S0)$.
- We are trying to establish that A₁, A₂, A₃ ⊢ ¬E(S0).
 Abbreviating A₁, A₂, A₃ as Γ, the strategy is to show that

$$\Gamma \vdash E(S0) \rightarrow Q$$
 for some Q with $\Gamma \vdash \neg Q$;

we can then apply the \rightarrow E₂ rule (aka modus tollens) to get

 $\Gamma \vdash \neg E(S0).$

$$\frac{\Gamma \vdash P \to Q \quad \Gamma \vdash \neg Q}{\Gamma \vdash \neg P} \qquad (\to E_2)$$

1. $\Gamma \vdash E(S0) \leftrightarrow (S0 = 0 \lor \exists y : (Ey \land S0 = SSy))$. ($\forall E$ applied to $A_{1.}$)

2. $\Gamma \vdash E(S0) \rightarrow (S0 = 0 \lor \exists y : (Ey \land S0 = SSy))$. (Expand \leftrightarrow and use one of the \land elimination rules.)

3. $\Gamma, E(S0) \vdash S0 = 0 \lor \exists y : (Ey \land S0 = SSy). (\rightarrow E).$

$$\begin{array}{l} A_{1}: \forall x: Ex \leftrightarrow \left(x = 0 \lor \left(\exists y: Ey \land x = SSy\right)\right) \\ \\ \frac{\Gamma \vdash \forall x: Px}{\Gamma \vdash Pc} \qquad (\forall E) \\ \frac{\Gamma \vdash P \land Q}{\Gamma \vdash P} \qquad (\land E_{1}) \\ \frac{\Gamma \vdash P \land Q}{\Gamma \vdash Q} \qquad (\land E_{2}) \\ \\ \frac{\Gamma \vdash P \rightarrow Q}{\Gamma \vdash Q} \qquad (\land E) \end{array}$$

- 3. $\Gamma, E(S0) \vdash S0 = 0 \lor \exists y : (Ey \land S0 = SSy). (\rightarrow E).$
- 4. $\Gamma, E(S0) \vdash \neg (S0 = 0)$. (Apply $\forall E \text{ to } A_2$.)

5. $\Gamma, E(S0) \vdash \exists y : (Ey \land S0 = SSy)$. (Combine last two steps using $\lor E_1$.)

6. $\Gamma, E(S0) \vdash Ez \land S0 = SSz$. (This is $\exists E$. In the condensed proof we didn't rename y, but calling it z here makes it a little more obvious that we are fixing some particular constant.)

$$A_{2}:\forall x: 0 \neq Sx.$$

$$\frac{\Gamma \vdash \forall x: Px}{\Gamma \vdash Pc} \qquad (\forall E)$$

$$\frac{\Gamma \vdash P \lor Q \quad \Gamma \vdash \neg P}{\Gamma \vdash Q} \qquad (\lor E_{2})$$

$$\frac{\Gamma \vdash \exists x: Px}{\Gamma \vdash Pc} \qquad (\exists E)$$

- 8. $\Gamma, E(S0) \vdash S0 = SSz \leftrightarrow 0 = Sz$. (Apply $\forall E$ to A_3).
- 9. $\Gamma, E(S0) \vdash S0 = SSz \rightarrow 0 = Sz$. (Another expansion plus $\wedge E$).
- 10. $\Gamma, E(S0) \vdash 0 = Sz$. (Apply $\rightarrow E_1$ to S0 = SSz and $S0 = SSz \rightarrow 0 = Sz$.)

$$A_3: \forall x \forall y: Sx = Sy \to x = y.$$

$$\frac{\Gamma \vdash \forall x : Px}{\Gamma \vdash Pc} \qquad (\forall E)$$

$$\frac{\Gamma \vdash P \to Q \quad \Gamma \vdash P}{\Gamma \vdash Q} \qquad (\to E_1)$$

 \leftrightarrow

10. $\Gamma, E(S0) \vdash 0 = Sz$. (Apply $\rightarrow E_1$ to S0 = SSz and $S0 = SSz \rightarrow 0 = Sz$.)

11.
$$\Gamma \vdash E(S0) \rightarrow 0 = Sz. (\rightarrow I.)$$

12. $\Gamma \vdash \neg (0 = Sz). (\forall E \text{ and } A_2.)$
13. $\Gamma \vdash \neg E(S0). (\rightarrow E_2.)$

$$A_{2} : \forall x : 0 \neq Sx.$$

$$\frac{\Gamma \vdash \forall x : Px}{\Gamma \vdash Pc} \qquad (\forall E)$$

$$\frac{\Gamma \vdash P \rightarrow Q \quad \Gamma \vdash \neg Q}{\Gamma \vdash \neg P} \qquad (\rightarrow E_{2})$$

Theorem 2.6.2. For all x, if x is even, SSSSx is even.

Proof. Let x be even. Then SSx is even (Axiom A_1), and so SS(SSx) = SSSSx is also even.

Written out using natural-deduction inference rules (with some of the more boring steps omitted), the proof would look like this:

- 1. $\Gamma, Ex \vdash (\exists y : Ey \land SSx = SSy) \rightarrow E(SSx)$. (Axiom $A_1, \forall E, \lor E_1$.)
- 2. $\Gamma, Ex \vdash Ex$.
- 3. $\Gamma, Ex \vdash SSx = SSx$. (Reflexivity of =.)
- 4. $\Gamma, Ex \vdash Ex \land SSx = SSx$. ($\land I$ applied to previous two steps.)
- 5. $\Gamma, Ex \vdash \exists y : Ey \land SSy = SSx.$ (Let y = x.)
- 6. $\Gamma, Ex \vdash E(SSx)$. (Modus ponens!)
- 7. $\Gamma, Ex \vdash E(SSSSx)$. (Do it all again to show $E(SSx) \rightarrow E(SSSSx)$. This is the boring part we promised to omit.)
- 8. $\Gamma \vdash Ex \rightarrow E(SSSSx). (\rightarrow I.)$
- 9. $\Gamma \vdash \forall x : Ex \to E(SSSSx). \ (\forall I).$

- 1. $\Gamma, Ex \vdash (\exists y : Ey \land SSx = SSy) \rightarrow E(SSx)$. (Axiom $A_1, \forall E, \forall E_1$.)
- 2. $\Gamma, Ex \vdash Ex$.
- 3. $\Gamma, Ex \vdash SSx = SSx$. (Reflexivity of =.)

- 1. $\Gamma, Ex \vdash (\exists y : Ey \land SSx = SSy) \rightarrow E(SSx)$. (Axiom $A_1, \forall E, \forall E_1$.)
- 2. $\Gamma, Ex \vdash Ex$.
- 3. $\Gamma, Ex \vdash SSx = SSx$. (Reflexivity of =.)
- 4. $\Gamma, Ex \vdash Ex \land SSx = SSx$. ($\land I$ applied to previous two steps.)
- 5. $\Gamma, Ex \vdash \exists y : Ey \land SSy = SSx.$ (Let y = x.)
- 6. $\Gamma, Ex \vdash E(SSx)$. (Modus ponens!)
- 7. $\Gamma, Ex \vdash E(SSSSx)$. (Do it all again to show $E(SSx) \rightarrow E(SSSSx)$. This is the boring part we promised to omit.)
- 8. $\Gamma \vdash Ex \rightarrow E(SSSSx). (\rightarrow I.)$
- 9. $\Gamma \vdash \forall x : Ex \to E(SSSSx). \ (\forall I).$