Discrete Math 2018

problem set 2

- 1. Using logic equivalence to show that $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$
- 2. List common logic equivalences
- 3. List absorption laws
- 4. Give contrapositive, inverse and converse of $p \rightarrow q$.
- 5. Using logic equivalence to show $(P \land (P \rightarrow Q) \rightarrow Q) \equiv 1$
- 6. State difference between conjunctive normal form (CNF) and disjunctive normal form (DNF)
- 7. Translate $(P \rightarrow Q) \land (\sim P \rightarrow Q)$ to CNF and DNF separately.
- 8. Choose logics that are not propositions.
 - A. Socrates is a man.
 - B. If Socrates is a man, then Socrates is mortal.
 - C. Therefore, Socrates is mortal.
 - D. "x is human."
 - E. "x is the parent of y."
 - F. "x+2=x²."
 - G. H(x) = "x is human."
 - H. P(x,y) = "x is the parent of y." •
 - I. $Q(x) = x^2$.
- 9. State the quantifier version of De Morgan's laws.

- 10. Use nested quantifiers to express the following statements and give explanations.
 - A. "there is no largest prime number".

B.
$$\lim_{x \to \infty} f(x) = y$$

11. Let likes(x, y) denote the predicate that x likes y. Explain the following two predicates and state their difference

- B. $\exists y \forall x : likes(x, y)$
- 12. "No cows are blue" can be expressed by $\sim \exists x : Cow(x) \land Blue(x)$. Give the other four versions and explain each of their derivations.