Discrete Math 2018

problem set 5

- 1. State and explain the strategy of proving $A \rightarrow B$ for each of the following cases.
 - A. B=~Q and Q is given.
 - B. $B=\exists xP(x)$ and A is given.
 - C. $B=\sim \forall x P(x)$ and A is given.
 - D. $B=C \lor D$ and $A \land \neg C$ is given.
 - E. $B=\forall x \in N P(x)$ and A is given.
- 2. Let Ex denote the predicate that x is even.

$$A_1 : \forall x : Ex \leftrightarrow (x = 0 \lor (\exists y : Ey \land x = SSy))$$

 $A_2: \forall x: \emptyset = Sx.$

 $A_3: \forall x \forall y: Sx=Sy \rightarrow x=y.$

- A. Express the second version of inference rule of implication elimination (\rightarrow E₂).
- B. Apply $(\rightarrow E_2)$ to prove $\Gamma \vdash \neg E(S0)$ given $\Gamma \vdash E(S0) \rightarrow Q$ for some Q with $\Gamma \vdash \neg Q$;
- C. State the inference rule of $\forall E$.
- D. Derive the result of applying rule $\forall E$ to A_1 .
- E. State the rule of $(\rightarrow E)$.
- F. Apply rule (\rightarrow E) to statements

$$\Gamma \vdash E(S0)$$

$$\Gamma \vdash E(S0) \rightarrow (S0=0) \lor \exists y : (Ey \land S0 = SSy)$$

- G. State the inference rule of $\vee E_1$.
- H. Derive the result of applying it to statements of

$$\Gamma$$
,E(S0) $\vdash \neg$ (S0=0)

$$\Gamma, E(S0) \vdash (S0=0) \lor \exists y : (Ey \land S0 = SSy)$$