Discrete Math 2018

problem set 6

- 1. Let A and B be sets. Use rules to define set operations respectively for
 - A. the union of A and B,
 - B. the intersection of A and B,
 - C. the set difference of A and B,
 - D. the symmetric difference of A and B.
- 2. Let $x_0 = \{\emptyset\}$ denote a set. Consider construction of following sets. If we relate \emptyset to 0 and x_0, x_1, x_2, \dots to 1,2,..., we have natural numbers.
 - A. Let $x_1 = x_0 \cup \{x_0\}$. $x_1 = ?$
 - B. Let $x_2 = x_1 \cup \{x_1\}$. $x_2 = ?$
 - C. Let $x_3 = x_2 \cup \{x_2\}$. $x_3 = ?$
 - D. $x_4 \cup x_2 = ?$
 - E. $x_4 \cap x_2 = ?$
 - F. $x_4 \setminus x_2 = ?$

G.
$$x_4 \bigtriangleup x_2 = ?$$

- H. Is $x_2 \in x_3$? Explain why.
- I. Is $x_2 \subseteq x_3$? Explain why.
- Let my_package = {{my_lunch}, my_textbook, my_slingshot}. Is my_lunch ∈ my_package? Is my_lunch ⊆ my_package ?
- 3. Use rules to generate the following sets.
 - A. the even numbers
 - B. the odd numbers
 - C. the prime numbers
- 4. Prove that the following statements hold for all sets S and T.

A. S \subseteq S \cup T

B. $S = (S \cap T) \cup (S \setminus T)$