Numerical Analysis

·         Course Outline

·         *Introduction pdf  *pdf

·         *Conjugate Gradient Method for Solving Linear System pdf *pdf pdf code  Note_EX1

·         IEEE Xplore - Training feedforward networks with the Marquardt algorithm      *Deep Learning Toolbox

·         Gradient of deep perceptrons

·         Gradients in Neural mapping *my_net2.m  *perceptrons.m

·         Nonlinear System Solving by Newton's Method *pdf Homework 2   nonlinear_newton 

·         Linear mapping and nonlinear mapping

·         object-oriented design of deep learning

·         Least mean square method of deep neural networks

·         Batch Updating and Autoencoding

·         My_Net_Train_Test

·         Final - Neural Network Toolbox & Matconvnet

·         * Matlab_programing pdf *pdf Homework 1

·         *Line & hyperplane fitting  LDA for wine classification   2016fit_tanh_M   Project2016

o    demo_hp_fitting.m

o    demo_hp_fitting2.m

o    demo_wine_fitting.m

o    plot2d.m

o    MLP_Tool.m  MLP_Tool.fig

o    Wine.dat

·         Function approximation using NNSYSID

o    The NNSYSID Toolbox

o    eval_MLP2

o    mean_square_error2.m

o    learn_myMLP.m

·         *Radial Basis Function Network - File Exchange - MATLAB Central

·         Gradient Descent method and nonlinear conjugate gradient method for learning RBF pdf

·         Nonlinear_Conjugate_Gradient_Method (pdf)

·         Implementation_of_NCG_method (pdf)

·         Midterm_2012

·         Nonlinear Conjugate Gradient Learning

·         *LM learning of MLP and RBF neural networks  Homework 3

o    MATLAB coding (LMMLP code) LMMLP code2014 My LM MLP  My LM RBF

1.    GA optimization of RBF

2.    LM-learning of MLP pdf Evaluation

3.      LM-learning of RBF

o    Exercise

·         DA using NNSYSID  Separable  DA_LM_RBF

·         Nonlinear Recursive Relations Hill Valley_LM RBF *K-means  *Advanced clustering  data_gen.m  annealed_kmeans2.m  color_clustering.rar  application 期末報告 

·         *MFA(mean field annealing) optimization pdf

o    MFA optimization for Graph Bisection pdf

o    Matlab coding for graph bisection pdf

o    MFA Optimization for TSP pdf

·         *EM clustering pdf

·         Unsupervised MFA learning for data clustering pdf

o    *Learning generative models      *Annealed Kullback-Leibler divergence minimization

o    plot_normal.m

o    GM.m

o    microarrayPT.mat

o    demo_kmeans

o    Exercise

·         Unsupervised MFA learning  for self-organization and ICA & supervised MFA learning for Classification pdf

·         Unsupervised MFA learning for self-organization

·         Supervised MFA learning for classification

·         Unsupervised MFA learning for independent component analysis

·         Final project: LM learning for RBF networks

·         Matlab programming of RBF-LM learning

·         Data driven function approximation

·         Reference

·         Slides for MATLAB programming I

·         Slides for MATLAB programming II

·         Slides for MATLAB programming II

·         Numerical mathematics and computing, four Edition, Cheney & Kincaid

·         Online slides

·         Lecture slides: http://134.208.26.61/course/na/2007NA.htm

·         Numerical methods with MATLAB:Implementation and application, G. Rechtenwald

·         http://web.cecs.pdx.edu/~gerry/nmm/

·         Numerical Methods with MATLAB

Course Outline

科目代碼

AM__52100

科目名稱

數值分析

授課老師

吳建銘

開課班級

碩士

每週授課時數

3(二8/二9/二10)

校內分機

3531

教師電子郵件

jmwu@livemail. tw

教師辦公室

理B301

會談時間

課程助教

吳俊樟

助教電子郵件

 

助教工作項目

 

課程目標

This course focuses on fundamental numerical methods and advanced iterative approaches for intelligence numerical computation. It will first introduce numerical and symbolic integration, differentiation and iterative approaches respectively for solving hyper-plane fitting, linear systems and nonlinear systems, further addressing on nonlinear function approximation, unconstrained optimizations based on the gradient method, the Newton-Gauss method and the Levenberg-Marquardt method and annealed Kullback-Leibler divergence minimization for solving data clustering, density estimation, independent component analysis, computational self-organization and classification.

教學方法

Lectures and matlab programming exercises

教學評量

Midterm 30%+Final 30%+ Exercise 30%+ General Performance 10%

課堂教材

Textbook and lecture slides

其他教材

數值分析

作業備註

 

其他標題

 

其他內容

 


 

1

 

進度

重要事項

1

1

Introduction

 

2

2

Matlab programming

Exercise 1

3

3

Nonlinear System Solving

 

4

4

Line fitting, hyperplane fitting, quadratic-surface fitting

Exercise 2

5

5

Function approximation

 

6

6

Newton method and Newton-Gauss method

Exercise 3

7

7

Levenberg-Marquardt method

 

8

8

Recursive function approximation

Exercise 4

9

9

期中考試週 Midterm Exam

 

10

10

Differential equation approximation

 

11

11

Classification I

Exercise 5

12

12

Classifiaction II

 

13

13

Kullback-Leibler divergence minimization

Exercise 6

14

14

Mean field annealing

 

15

15

Clsutering and density function approximation

Exercise 7

16

16

Self-organization

 

17

17

Applications

Exercise 8

18

期末考試週